17 resultados para Ribosome


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA ligases function pervasively across the three kingdoms of life for RNA repair, splicing and can be stress induced. The RtcB protein (also HSPC117, C22orf28, FAAP and D10Wsu52e) is one such conserved ligase, involved in tRNA and mRNA splicing. However, its physiological role is poorly described, especially in bacteria. We now show in Escherichia coli bacteria that the RtcR activated rtcAB genes function for ribosome homeostasis involving rRNA stability. Expression of rtcAB is activated by agents and genetic lesions which impair the translation apparatus or may cause oxidative damage in the cell. Rtc helps the cell to survive challenges to the translation apparatus, including ribosome targeting antibiotics. Further, loss of Rtc causes profound changes in chemotaxis and motility. Together, our data suggest that the Rtc system is part of a previously unrecognised adaptive response linking ribosome homeostasis with basic cell physiology and behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA Polymerase I (Pol-I) and its associated holoenzyme complex. Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene. We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened. We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage.