83 resultados para Reduction of losses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reductions of nitrobenzene and 4-nitrophenol were studied by cyclic voltammetry in the room temperature ionic liquid 1-butyl2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][N(Tf)(2)] on a gold microelectrode. Nitrobenzene was reduced reversibly by one electron and further by two electrons in a chemically irreversible step. The more complicated reduction of 4-nitrophenol revealed three reductive peaks (two irreversible and one reversible) which were successfully simulated using the digital simulation program DigiSim((R)) using a mechanism of rapid self-protonation, given below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the selective reduction of NOx with hydrocarbons under lean-burn conditions using non-zeolitic oxides and platinum group metal (PGM) catalysts has been critically reviewed. Alumina and silver-promoted alumina catalysts have been described in detail with particular emphasis on an analysis of the various reaction mechanisms that have been put forward in the literature. The influence of the nature of the reducing agent, and the preparation and structure of the catalysts have also been discussed and rationalised for several other oxide systems. It is concluded for non-zeolitic oxides that species that are strongly adsorbed on the surface, such as nitrates/nitrites and acetates, could be key intermediates in the formation of various reduced and oxidised species of nitrogen, the further reaction of which leads eventually to the formation of molecular nitrogen. For the platinum group metal catalysts, the different mechanisms that have been proposed in the literature have been critically assessed. It is concluded that although there is indirect, mainly spectroscopic, evidence for various reaction intermediates on the catalyst surface, it is difficult to confirm that any of these are involved in a critical mechanistic step because of a lack of a direct quantitative correlation between infrared and kinetic measurements. A simple mechanism which involves the dissociation of NO on a reduced metal surface to give N(ads) and O(ads), with subsequent desorption of N-2 and N2O and removal of O(ads) by the reductant can explain many of the results with the platinum group metal catalysts, although an additional contribution from organo-nitro-type species may contribute to the overall NOx reduction activity with these catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This study reports the development, characterisation and microbiological testing of surface-modified polyvinylchloride (PVC) films for the purpose of reducing bacterial adherence.

METHODS: Irreversible covalent surface modification was achieved via nucleophilic substitution of fluorinated thiol-terminated compounds onto the polymer backbone. Four fluorinated modifiers, 2,3,5,6-tetrafluorothiophenol (TFTP), 4-(trifluoromethyl)thiophenol (TFMTP), 3,5-bis(trifluoromethyl)benzenethiol (BTFMBT) and 3,3,4,4,5,5,6,6,7, 7,8,8,9,9,10,10,10-heptadecafluoro-decane-1-thiol (HDFDT), were investigated. Modification was confirmed using attenuated total reflectance infrared spectroscopy; Raman mapping demonstrated that modification was homogenous on the macroscopic scale. The influence of fluorination on surface hydrophobicity was studied by contact angle analysis. The effect on microbial adherence was examined using Pseudomonas aeruginosa and Staphylococcus aureus.

KEY FINDINGS: The resultant changes in contact angle relative to control PVC ranged from -4 degrees to +14 degrees . In all cases, adherence of P. aeruginosa and S. aureus was significantly reduced relative to control PVC, with adherence levels ranging from 62% and 51% for TFTP-modified PVC to 32% and 7% for TFMTP-modified PVC.

CONCLUSIONS: These results demonstrate an important method in reducing the incidence of bacterial infection in PVC medical devices without compromising mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The voltammetry for the reduction of oxygen at a microdisk electrode is reported in six commonly used RTILs: [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)dmim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], and [N-6.2.2.2][NTf2], where [C(4)mim](+) is 1-butyl-3-methylimidazolium, [NTf2](-) is bis(trifluoromethanesulfonyl)imide, [C(4)mpyrr](+) is N-butyl-N-methylpyrrolidinium, [C(4)dmim](+) is 1-butyl-2,3-methylimidazolium, [BF4](-) is tetrafluoroborate, [PF6](-) is hexafluorophosphate, and [N-6.2.2.2](+) is n-hexyltriethylammonium at varying scan rates (50-4000 mV s(-1)) and temperatures (293-318 K). Diffusion coefficients, D, of oxygen are deduced at each temperature from potential-step chronoamperometry, and diffusional activation energies are calculated. Oxygen solubilities are also reported as a function of temperature. In the six ionic liquids, the Stokes-Einstein relationship (D proportional to eta(-1)) was found to apply only very approximately for oxygen. This is considered in relationship to the behavior of other diverse solutes in RTILs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective reduction of molecular oxygen with excess H-2 in the presence of alkenes was achieved successfully for the first time: silver supported on alumina catalysts exhibited full conversion of O-2 at temperature as low as 50 degrees C, while the conversion of ethene or propene remained essentially zero up to 250 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cantello, Barrier C. C.; Eggleston, Drake S.; Haigh, David; Haltiwanger, R. Curtis; Heath, Catherine M.; Hindley, Richard M.; Jennings, Keith R.; Sime, John T.; Woroniecki, Stefan R. SmithKline Beecham Pharmaceuticals, Surrey, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1994), (22), 3319-24. Publisher: Royal Society of Chemistry, CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 122:105736 AN 1995:237497 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract A novel biotransformation system for the redn. of carbon-carbon double bonds in 5-benzylidenethiazolidine-2,4-diones to give the corresponding 5-benzylthiazolidine-1,4-diones, using whole cells of red yeasts, is described. These reduced compds., which are recovered in good yield, are of potential use in the treatment of non-insulin dependent diabetes mellitus. The mild reaction conditions developed allow redn. of 5-benzylidenethiazolidine-2,4-diones contg. other functionalities which are not compatible with alternative redn. methods. The biocatalytic redn. is enantioselective and the synthesis of R-(+)-5-(4-{2-[methyl(2-pyridyl)amino]ethoxy}benzyl)thiazolidine-2,4-dione by Rhodotorula rubra CBS 6469 and structure confirmation by X-ray crystallog. is detailed. Optimization of reaction conditions (including immobilization) for these whole cell redn. system is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium his (trifluoromethanesulfonyl) imide [N-6.2.2.2][N(Tf)(2)], 1-butyl-3-methylimidazolium hexafluorosphosphate [C(4)mim] [PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C(4)mpyrr][N(Tf)(2)], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C-4mim][N(TF)(2)], N-butyl-N-methyl-pyrrolidinium dicyanamide [C(4)mpyrr][N(NC)(2)] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,(6,6)][FAP] on a platinum microelectrode. In [N-6,N-2,N-2,N-2][NTf2] and [P-14,P-6,P-6.6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion. which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P-14,P-6,P-6.6[FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N-6,N-2,N-2,N-2],[NTF2] and [P-14,P-6,P-6.6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of gaseous NO and C3H8 has been studied over low-exchanged Cu-ZSM-5 zeolite employing TPD, FTIR and pulse technique with the alternate introduction of NO or C3H8 onto the catalyst surface. The rate of the N-2 formation is directly proportional to the content of gaseous NO and the surface coverage with 2-nitrosopropane. There was no formation of N-2 during interaction of gaseous C3H8 with NO adsorbates. However, 2-nitrosopropane and its isomer acetone oxime were also formed in this reaction.