40 resultados para Recombinant Proteins -- therapeutic use
Resumo:
The interactions of epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) with the epidermal growth factor receptor (EGFR) were examined by insertion mutagenesis of the receptor. Seventeen insertions were made throughout a construct containing only the extracellular domain. This truncated receptor (sEGFR) was secreted and had a dissociation constant similar to that of the full-length solubilized receptor. Receptors with insertions within subdomain III were not secreted. Two receptors with insertions at positions 291 and 474, which border subdomain III, have significantly decreased binding to both EGF and TGF alpha relative to wild type. This confirms previous work demonstrating that subdomain III forms the primary binding site for EGF and TGF alpha. Four of the mutants within subdomain II had a decreased binding to TGF alpha relative to wild type, but had wild type binding to EGF. These results suggest that a region within subdomain II may selectively regulate the binding of TGF alpha. Two receptors which contained insertions within subdomains II and IV, approximately equidistant from the center of subdomain III, bound twofold more ligand molecules than wild type receptor, with an affinity similar to that of wild type receptor. These findings suggest that insertion at these positions allows the access of more than one ligand molecule to the binding site.
Resumo:
A patient with Felty's syndrome and rheumatoid arthritis was treated with recombinant granulocyte stimulating factor rhG-CSF (Neupogen) in view of severe neutropenia. He had a prompt rise in his neutrophil count and associated with this a severe flare of his arthritis and a skin rash. rhG-CSF was stopped, his neutrophil count fell rapidly and his symptoms resolved. rhG-CSF and the resulting rise in neutrophil count may be associated with flare of autoimmune disease in susceptible individuals.
Resumo:
This study was designed to assess the potential of the continuous erythropoietin receptor activator (C.E.R.A.) to correct anemia at extended administration intervals in erythropoiesis-stimulating agent-naīve patients with chronic kidney disease (CKD) not on dialysis and to determine its optimal starting dose.
Resumo:
Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.
Resumo:
There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leucine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these data demonstrate, for the first time, clear biochemical differences between the variants which help explain previous biomedical and epidemiological findings. © 2014 Federation of European Biochemical Societies.
Resumo:
Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of a new ophthalmic dosage forms with the existing drugs to improve efficacy and bioavailability including better patients' compliance and convenience has become trend in the most pharmaceutical industries. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization, recent researches carried out. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye also covered in this review.
Resumo:
Fasciolosis is an important foodborne, zoonotic disease of livestock and humans, with global annual health and economic losses estimated at several billion US$. Fasciola hepatica is the major species in temperate regions, while F. gigantica dominates in the tropics. In the absence of commercially available vaccines to control fasciolosis, increasing reports of resistance to current chemotherapeutic strategies and the spread of fasciolosis into new areas, new functional genomics approaches are being used to identify potential new drug targets and vaccine candidates. The glutathione transferase (GST) superfamily is both a candidate drug and vaccine target. This study reports the identification of a putatively novel Sigma class GST, present in a water-soluble cytosol extract from the tropical liver fluke F. gigantica. The GST was cloned and expressed as an enzymically active recombinant protein. This GST shares a greater identity with the human schistosomiasis GST vaccine currently at Phase II clinical trials than previously discovered F. gigantica GSTs, stimulating interest in its immuno-protective properties. In addition, in silico analysis of the GST superfamily of both F. gigantica and F. hepatica has revealed an additional Mu class GST, Omega class GSTs, and for the first time, a Zeta class member.
Resumo:
Acute leukaemias in relapse after allogeneic stem cell transplantation (SCT) respond poorly to donor leucocyte infusions (DLI) compared with chronic myeloid leukaemia (CML), at least in part because of faster disease kinetics. Fludarabine-containing 'non-myeloablative' chemotherapy followed by further allo SCT may offer more rapid and effective disease control. We report 14 patients with relapse after allo SCT for acute leukaemia [seven acute myeloid leukaemia (AML), five acute lymphoblastic leukaemia (ALL)] or refractory anaemia with excess blasts in transformation (RAEB-t, n = 2) treated with fludarabine, high-dose cytosine arabinoside (ara-C) and granulocyte colony-simulating factor (G-CSF) with (n = 10) or without (n = 2) idarubicin (FLAG +/- Ida) or DaunoXome (FLAG-X) (n = 2) and second allo SCT from the original donor. Donors were fully human leucocyte antigen (HLA) -matched in 13 cases with a single class A mismatch in one. Actuarial overall survival was 60% and disease-free survival was 26% at 58 months. Remissions after the second SCT were longer than those after the first bone marrow transplantation (BMT) in eight of the 13 assessable patients to date. Haematopoietic recovery was rapid. Transplants were well tolerated with no treatment-related deaths. The major complication was graft-versus-host disease (GvHD, acute >/= grade II-2 cases, chronic - eight cases, two limited, six extensive) although there have been no deaths attributable to this. FLAG +/- Ida and second allo SCT is a safe and useful approach and may be more effective than DLI in the treatment of acute leukaemias relapsing after conventional allo SCT.
Resumo:
Homotypic fusion between early endosomes requires the phosphatidylinositol 3-phosphate (PI3P)-binding protein, Early Endosomal Autoantigen 1 (EEA1). We have investigated the role of other proteins that interact with EEA1 in the fusion of early endosomes derived from Baby Hamster Kidney (BHK) cells. We confirm a requirement for syntaxin 13, but additionally show that the assay is equally sensitive to reagents specifically targeted against syntaxin 6. Binding of EEA1 to immobilised GST-syntaxin 6 and 13 was directly compared; only syntaxin 6 formed a stable complex with EEA1. Early endosome fusion requires the release of intravesicular calcium, and calmodulin plays a vital role in the fusion pathway, as judged by sensitivity to antagonists. We demonstrate that both EEA1 and syntaxin 13 interact with calmodulin. In the case of EEA1, binding to calmodulin requires an IQ domain, which is adjacent to a C-terminal FYVE domain that specifically binds to PI3P. We have assessed the influence of protein binding partners on EEA1 interaction with PI3P and find that both calmodulin and rab5-GTP are antagonistic to PI3P binding, whilst syntaxins 6 and 13 have no effect. These studies reveal a complex network of interactions between the proteins required for endosome fusion.
Resumo:
Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP-2-binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin-coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity-dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin-coated intermediates formed during synaptic vesicle recycling.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
Phyllomedusine frogs are an extraordinary source of biologically active peptides. At least 8 families of antimicrobial peptides have been reported in this frog clade, the dermaseptins being the most diverse. By a peptidomic approach, integrating molecular cloning, Edman degradation sequencing and tandem mass spectrometry, a new family of antimicrobial peptides has been identified in Cruziohyla calcarifer. These 15 novel antimicrobial peptides of 20–32 residues in length are named cruzioseptins. They are characterized by having a unique shared N-terminal sequence GFLD– and the sequence motifs –VALGAVSK– or –GKAAL(N/G/S) (V/A)V– in the middle of the peptide. Cruzioseptins have a broad spectrum of antimicrobial activity and low haemolytic effect. The most potent cruzioseptin was CZS-1 that had a MIC of 3.77 μM against the Gram positive bacterium, Staphylococcus aureus and the yeast Candida albicans. In contrast, CZS-1 was 3–fold less potent against the Gram negative bacterium, Escherichia coli (MIC 15.11 μM). CZS-1 reached 100% haemolysis at 120.87 μM. Skin secretions from unexplored species such as C. calcarifer continue to demonstrate the enormous molecular diversity hidden in the amphibian skin. Some of these novel peptides may provide lead structures for the development of a new class of antibiotics and antifungals of therapeutic use.
Resumo:
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Resumo:
The proteasome is a multicatalytic enzyme complex responsible for the regulated degradation of intracellular proteins. In recent years, inhibition of proteasome function has emerged as a novel anti-cancer therapy. Proteasome inhibition is now established as an effective treatment for relapsed and refractory multiple myeloma and offers great promise for the treatment of other haematological malignancies, when used in combination with conventional therapeutic agents. Bortezomib is the first proteasome inhibitor to be used clinically and a second generation of proteasome inhibitors with differential pharmacological properties are currently in early clinical trials. This review summarises the development of proteasome inhibitors as therapeutic agents and describes how novel assays for measuring proteasome activity and inhibition may help to further delineate the mechanisms of action of different proteasome inhibitors. This will allow for the optimized use of proteasome inhibitors in combination therapies and provide the opportunity to design more potent and therapeutically efficacious proteasome inhibitors.