102 resultados para Realidade virtual na arte
Resumo:
Background and purpose: Radiotherapy is widely used to palliate local symptoms in non-small-cell lung cancer. Using conventional X-ray simulation, it is often difficult to accurately localize the extent of the tumour. We report a randomized, double blind trial comparing target localization with conventional and virtual simulation.Methods: Eighty-six patients underwent both conventional and virtual simulation. The conventional simulator films were compared with digitally reconstructed radiographs (DRRs) produced from the computed tomography (CT) data. The treatment fields defined by the clinicians using each modality were compared in terms of field area, position and the implications for target coverage.Results: Comparing fields defined by each study arm, there was a major mis-match in coverage between fields in 66.2% of cases, and a complete match in only 5.2% of cases. In 82.4% of cases, conventional simulator fields were larger (mean 24.5+/-5.1% (95% confidence interval)) than CT-localized fields, potentially contributing to a mean target under-coverage of 16.4+/-3.5% and normal tissue over-coverage of 25.4+/-4.2%.Conclusions: CT localization and virtual simulation allow more accurate definition of the target volume. This could enable a reduction in geographical misses, while also reducing treatment-related toxicity.
Resumo:
Background and purpose: Currently, optimal use of virtual simulation for all treatment sites is not entirely clear. This study presents data to identify specific patient groups for whom conventional simulation may be completely eliminated and replaced by virtual simulation. Sampling and method: Two hundred and sixty patients were recruited from four treatment sites (head and neck, breast, pelvis, and thorax). Patients were randomly assigned to be treated using the usual treatment process involving conventional simulation, or a treatment process differing only in the replacement of conventional plan verification with virtual verification. Data were collected on set-up accuracy at verification, and the number of unsatisfactory verifications requiring a return to the conventional simulator. A micro-economic costing analysis was also undertaken, whereby data for each treatment process episode were also collected: number and grade of staff present, and the time for each treatment episode. Results: The study shows no statistically significant difference in the number of returns to the conventional simulator for each site and study arm. Image registration data show similar quality of verification for each study arm. The micro-costing data show no statistical difference between the virtual and conventional simulation processes. Conclusions: At our institution, virtual simulation including virtual verification for the sites investigated presents no disadvantage compared to conventional simulation.