86 resultados para Radio frequency modulation.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex dynamics of ionization and excitation mechanisms in capacitively coupled radio-frequency plasmas is discussed for single- and dual-frequency operations in low-pressure and atmospheric pressure plasmas. Electrons are energized through the dynamics of electric fields in the vicinity of the plasma boundary sheaths. Distinctly different power dissipation mechanisms can either co-exist or initiate mode transitions exhibiting characteristic spatio-temporal ionization structures. Phase resolved optical emission spectroscopy, in combination with adequate modelling of the population dynamics of excited states, and numerical simulations reveal dissipation associated with sheath expansion, sheath collapse, transient electron avalanches and wave–particle interactions. In dual-frequency systems the relative phase between the two frequency components provides additional strategies to tailor the plasma dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A near-isothermal micro-trickle bed reactor operated under radio frequency heating was developed. The reactor bed was packed with nickel ferrite micro-particles of 110. μm diameter, generating heat by the application of RF field at 180. kHz. Hydrodynamics in a co-current configuration was analysed and heat transfer rates were determined at temperature ranging from 55 to 100. °C. A multi-zone reactor bed of several heating and catalytic zones was proposed in order to achieve near-isothermal operations. Exact positioning, number of the heating zones and length of the heating zones composed of a mixture of nickel ferrite and a catalyst were determined by solving a one dimensional model of heat transfer by conduction and convection. The conductive losses contributed up to 30% in the total thermal losses from the reactor. Three heating zones were required to obtain an isothermal length of 50. mm with a temperature non-uniformity of 2. K. A good agreement between the modelling and experimental results was obtained for temperature profiles of the reactor. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron dynamics in a planar coil inductively coupled plasma (ICP) system with a capacitively biased electrode is investigated using space and phase resolved optical emission spectroscopy. The two power source frequencies are exact multiple of each other and phase-locked. In this configuration, the system is investigated when the coil is operated in both E-mode and H-mode. The results show that in a phase synchronized RF biased ICP, the electrode bias power couples with the capacitive contribution of the coil, in both E-mode and H-modes, similar to dual-frequency capacitively coupled plasmas (2f-CCPs). It is also demonstrated that in H-mode, the phase between the electrode bias frequency and the ICP coil frequency influences the electron heating, similar to the electrical asymmetry effect in 2f-CCPs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of the relative phase between the driving voltages on electron heating in asymmetric phase-locked dual frequency capacitively coupled radio frequency plasmas operated at 2 and 14 MHz is investigated. The basis of the analysis is a nonlinear global model with the option to implement a relative phase between the two driving voltages. In recent publications it has been reported that nonlinear electron resonance heating can drastically enhance the power dissipation to electrons at moments of sheath collapse due to the self-excitation of nonlinear plasma series resonance (PSR) oscillations of the radio frequency current. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In the case of two consecutive sheath collapses a substantial increase in dissipated power compared with the known increase due to a single PSR excitation event per period is observed. Phase resolved optical emission spectroscopy (PROES) provides access to the excitation dynamics in front of the driven electrode. Via PROES the propagation of beam-like energetic electrons immediately after the sheath collapse is observed. In this work we demonstrate that there is a close relation between moments of sheath collapse, and thus excitation of the PSR, and beam-like electron propagation. A comparison of simulation results to experiments in a single and dual frequency discharge shows good agreement. In particular the observed influence of the relative phase on the dynamics of a dual frequency discharge is described by means of the presented model. Additionally, the analysis demonstrates that the observed gain in dissipation is not accompanied by an increase in the electrode’s dc-bias voltage which directly addresses the issue of separate control of ion flux and ion energy in dual frequency capacitively coupled radio frequency plasmas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel Class-E power amplifier (PA) topology with transmission-line load network is presented in this brief. When compared with the classic Class-E topology, the new circuit can increase the maximum operating frequency up to 50% higher without trading the other Class-E figures of merit. Neither quarterwave line/massive radio-frequency choke for collector/drain biasing nor additional fundamental-frequency output matching circuit are needed in the proposed PA, thus resulting in a compact design. Closed-form formulations are derived and verified by simulations with practical design limitations carefully taken into consideration and good agreement achieved.