44 resultados para RNA-POLYMERASE-II
Resumo:
Ribosome biogenesis is a fundamental cellular process tightly linked to cell growth and proliferation, which requires the coordinated transcription of all three nuclear polymerases. Synthesis of ribosomal RNA (rRNA) by RNA polymerase I (Pol I) has been suggested as a key regulator of ribosome biogenesis, and there is a strong link between transcription of ribosomal RNAs and cellular proliferation. This makes Pol I transcription a valid and attractive target for anticancer therapy. At the moment however there are only a small number of compounds that act as specific inhibitors of Pol I transcription and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. Therefore, to aid in the development of new inhibitors of Pol I, high-throughput methods to monitor and detect changes in Pol I activity need to be developed. This current study aimed to address the question of whether or not quantitative PCR (qPCR) could be used to detect changes in rRNA production in cells under different conditions that repress Pol I activity i.e. serum starvation and drug treatment. Our results have shown that using primers and a hydrolysis probe designed for the 5’ETS region of the pre-rRNA molecule, rRNA levels in both treated and untreated cells could be determined by using qPCR.
Amplification resulted in formation of a single product and S1 nuclease protection assay confirmed the down-regulation of Pol I transcription. Following serum-starvation and drug treatment there was a dramatic reduction in the amount of 5’ETS transcript quantitated by both Sybr Green chemistry and the use of a fluorescently labelled hydrolysis probe. The optimization of the qPCR strategy will be discussed.
Resumo:
The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA Polymerase I (Pol-I) and its associated holoenzyme complex. Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene. We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened. We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage.
Resumo:
We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.
Resumo:
The basis of quantitative regulation of gene expression is still poorly understood. In Arabidopsis thaliana, quantitative variation in expression of FLOWERING LOCUS C (FLC) influences the timing of flowering. In ambient temperatures, FLC expression is quantitatively modulated by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. Investigation of this mechanism unexpectedly showed that RNA polymerase II (Pol II) occupancy changes at FLC did not reflect RNA fold changes. Mathematical modeling of these transcriptional dynamics predicted a tight coordination of transcriptional initiation and elongation. This prediction was validated by detailed measurements of total and chromatin-bound FLC intronic RNA, a methodology appropriate for analyzing elongation rate changes in a range of organisms. Transcription initiation was found to vary ∼ 25-fold with elongation rate varying ∼ 8- to 12-fold. Premature sense transcript termination contributed very little to expression differences. This quantitative variation in transcription was coincident with variation in H3K36me3 and H3K4me2 over the FLC gene body. We propose different chromatin states coordinately influence transcriptional initiation and elongation rates and that this coordination is likely to be a general feature of quantitative gene regulation in a chromatin context.
Resumo:
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.
Resumo:
This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.
Resumo:
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.
Resumo:
Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression.
Resumo:
Ribosome biogenesis is a fundamental cellular process which is tightly regulated in normal cells. A number of tumour suppressors and oncogenes could affect the production of ribosomes at different levels and an upregulation could lead to increased protein biosynthesis which is one of the characteristic features of all cancer cells. Ribosome biogenesis is a very complex process which requires coordinated transcription by all three nucleolar polymerases and the first event in this process is synthesis of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I). Importantly, recent data has pictured rRNA transcription as a key regulator of whole ribosome biogenesis and therefore makes it a valid and very attractive target for anticancer therapy, as well as a perspective biomarker. However, at the moment there is only one known specific inhibitor of Pol I transcription (at stage one of clinical trials) and this makes it very difficult for the development of drugs which would target rRNA transcription and consequently ribosome biogenesis. We have recently discovered that antitumor alkaloid ellipticine (isolated in 1959 from the plant species Ochrosia) is a potent inhibitor of Pol I transcription (both in vitro and in vivo). Ellipticine and its derivatives are known as efficient topoisomerase II inhibitors and inhibitors of some kinases, however we have shown that these inhibitory activities and the ability of ellipticine to repress Pol I activity are unrelated. Moreover, our preliminary data suggests that ellipticine specifically targets Pol I transcription and it has no effect on transcription by Pol II and Pol III at the same time scale. The possible mechanisms of inhibition of Pol I transcription by ellipticines will be discussed.
Resumo:
Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites.
Resumo:
The interplay between methylation and demethylation of histone lysine residues is an essential component of gene expression regulation and there is considerable interest in elucidating the roles of proteins involved. Here we report that histone demethylase KDM4A/JMJD2A, which is involved in the regulation of cell proliferation and is overexpressed in some cancers, interacts with RNA Polymerase I, associates with active ribosomal RNA genes and is required for serum-induced activation of rDNA transcription. We propose that KDM4A controls the initial stages of transition from 'poised', non-transcribed rDNA chromatin into its active form. We show that PI3K, a major signalling transducer central for cell proliferation and survival, controls cellular localization of KDM4A and consequently its association with ribosomal DNA through the SGK1 downstream kinase. We propose that the interplay between PI3K/SGK1 signalling cascade and KDM4A constitutes a mechanism by which cells adapt ribosome biogenesis level to the availability of growth factors and nutrients.
Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase
Resumo:
Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.
Resumo:
Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.
Resumo:
Hepatitis C is an infection of the liver caused by a pos. single-stranded RNA virus (HCV) which affects 170 million people worldwide. It is responsible for 40-60% of all liver disease and is the major cause of liver transplants in the United States. The HCV NS5B gene encodes the viral RNA-dependent RNA polymerase which is essential for HCV replication. We have previously reported the identification of acylpyrrolidines as potent inhibitors of NS5B; however their activity is attenuated against genotype 1a. The design of improved broader-spectrum compds., capable of effective inhibition of both genotypes 1b and 1a is desirable. An understanding of the binding site and genotype sequence differences was utilized to design compds. with greatly enhanced genotype 1a and 1b potency. Our studies led to the identification of GSK625433, a potent, homochiral inhibitor of these HCV genotypes in both enzyme and sub-genomic replicon cell-based assays. GSK625433 has a good pharmacokinetic profile in pre-clin. animal species, enabling progression to clin. evaluation.
Resumo:
The Jeryl Lynn (JL) vaccine against mumps virus (MuV) contains two components, MuV(JL5) and MuV(JL2), which differ by over 400 nt. Due to the occurrence of bias in the direction of mutation, these differences and those found in nucleotide sequences of different isolates of the minor component in the vaccine (MuV(JL2)) might be due to the effect of ADAR-like deaminases on MuV grown in tissue-cultured cells. A molecular clone Of MuV(JL2) (pMuV(JL2)) and MuV(JL2) -specific helper plasmids were constructed in order to investigate molecular interactions between MuV(JL5) and MuV(JL2), to augment the existing molecular clone Of MuV(JL)5 (pMuV(JL5)) and MuV(JL5) -specific helper plasmids. Genome and mRNA termini Of MuV(JL2) were characterized, and an unusual oligo-G insertion transcriptional editing event was detected near the F mRNA polyadenylation site of MuV(JL2), but not Of MuV(JL5). Genes encoding glycoproteins of rMuV(JL2) and rMuV(JL5) have been exchanged to characterize the oligo-G insertion, which associated with the specific sequence of the IF gene of MuV(JL2) and not with any other genes or the RNA-dependent RNA polymerase of strain MuV(JL2). The results indicate that a single G-to-A sequence change obliterates the co-transcriptional editing of the F mRNA and that this oligo-G insertion does not affect the growth of the virus.