68 resultados para RESTRICTED INTRAMOLECULAR ROTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg, and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to similar to 300 km s(-1) using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen-enriched intrinsic slow rotators (nu sin i less than or similar to 50 km s(-1)) incompatible with our models (similar to 20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (dex) fast rotators (log g < 3.7 dex) that are relatively unenriched (a further similar to 20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen-burning main sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields is required to understand the surface properties of a population of massive main- sequence stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we describe a motion stimulus in which the quality of rotation is fractal. This makes its motion unavailable to the translationbased motion analysis known to underlie much of our motion perception. In contrast, normal rotation can be extracted through the aggregation of the outputs of translational mechanisms. Neural adaptation of these translation-based motion mechanisms is thought to drive the motion after-effect, a phenomenon in which prolonged viewing of motion in one direction leads to a percept of motion in the opposite direction. We measured the motion after-effects induced in static and moving stimuli by fractal rotation. The after-effects found were an order of magnitude smaller than those elicited by normal rotation. Our findings suggest that the analysis of fractal rotation involves different neural processes than those for standard translational motion. Given that the percept of motion elicited by fractal rotation is a clear example of motion derived from form analysis, we propose that the extraction of fractal rotation may reflect the operation of a general mechanism for inferring motion from changes in form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiomerically pure N,N'-bis(-2,2'-dipyridyl-5-yl)carbonyl-(S/R,S/R)-1,2-diphenylethylenediamine has been synthesised by linking two 2,2'-bipyridine units by (R,R)- and (S,S)-1,2-diphenylethylenediamine. The ligands possess a hindered rotation between the bipyridine chromophores, which are held together by intramolecular hydrogen bonds. ES mass spectroscopy confirmed that reaction with Fe(II), Co(III) and Cd(II) afforded dinuclear complexes. CD spectroscopy implied that enantiopure ligands conferred helicity to the metals centre giving a dominant triple helicate diastereoisomer (with the RR isomer giving a P helicate). H-1 NMR spectroscopy of the cadmium complex confirmed the presence of a single diastereoisomer. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive treatment of 9-(phenylethynyl)fluoren-9-ol (1a), with HBr, butyllithium and chlorodiphenylphosphine furnishes 3,3-(biphenyl-2,2'-diyl)-1-diphenylphosphino-1-phenylallene (5). Moreover, reaction of 1a directly with chlorodiphenylphosphine yields the corresponding allenylphosphine oxide (6). The allenylphosphine (5), and Fe-2(CO)(9) initially form the phosphine-Fe(CO)(4) complex, 11, which is very thermally sensitive and readily loses a carbonyl ligand. In the resulting phosphine-Fe(CO)(3) system, 12, the additional site at iron is coordinated by the allene double bond adjacent to phosphorus; the Fe(CO) 3 tripod in 12 exhibits restricted rotation on the NMR time-scale even at room temperature. The corresponding chromium complex, (5)-Cr(CO)5 (9), has also been prepared. The gold complexes (5)AuCl (13), and [(5)-Au(THT)](+) X-, where (THT) is tetrahydrothiophene, and X = PF6 (14a), or ClO4 (14b), are analogous to the known triphenylphosphine-gold complexes. In contrast, in the (arene)(allenylphosphine) RuCl2 system the allene double bond adjacent to phosphorus displaces a chloride, and the resulting cationic species undergoes nucleophilic attack by water yielding ultimately a five-membered Ru-P-C=C-O ruthenacycle (17). Thus, the allenylphosphine (5), reacts initially as a conventional mono-phosphine but, when the metal centre has a readily displaceable ligand such as a carbonyl or halide, the allene double bond adjacent to the phosphorus can also function as a donor. X- ray crystal structures are reported for 5, 6, 11, 12, 13, 14a, 14b and 17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new three-limb, six-degree-of-freedom (DOF) parallel manipulator (PM), termed a selectively actuated PM (SA-PM), is proposed. The end-effector of the manipulator can produce 3-DOF spherical motion, 3-DOF translation, 3-DOF hybrid motion, or complete 6-DOF spatial motion, depending on the types of the actuation (rotary or linear) chosen for the actuators. The manipulator architecture completely decouples translation and rotation of the end-effector for individual control. The structure synthesis of SA-PM is achieved using the line geometry. Singularity analysis shows that the SA-PM is an isotropic translation PM when all the actuators are in linear mode. Because of the decoupled motion structure, a decomposition method is applied for both the displacement analysis and dimension optimization. With the index of maximal workspace satisfying given global conditioning requirements, the geometrical parameters are optimized. As a result, the translational workspace is a cube, and the orientation workspace is nearly unlimited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P ~ t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a single-symbol decodable transmit strategy based on preprocessing at the transmitter has been introduced to decouple the quasi-orthogonal space-time block codes (QOSTBC) with reduced complexity at the receiver [9]. Unfortunately, it does not achieve full diversity, thus suffering from significant performance loss. To tackle this problem, we propose a full diversity scheme with four transmit antennas in this letter. The proposed code is based on a class of restricted full-rank single-symbol decodable design (RFSDD) and has many similar characteristics as the coordinate interleaved orthogonal designs (CIODs), but with a lower peak-to-average ratio (PAR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragmentation of natural populations can have negative effects at the genetic level, thus threatening their evolutionary potential. Many of the negative genetic impacts of population fragmentation can be ameliorated by gene flow and it has been suggested that in wind-pollinated tree species, high or even increased levels of gene flow are a feature of fragmented populations, although several studies have disputed this. We have used a combination of nuclear microsatellites and allele-specific PCR (AS-PCR) analysis of chloroplast single nucleotide polymorphisms (SNPs) to examine the levels and patterns of genetic diversity and population differentiation in fragmented populations of juniper (Juniperus communis) in Ireland and inform conservation programs for the species. Significant population differentiation was found for both chloroplast and nuclear markers, indicating restricted gene flow, particularly over larger geographic scales. For conservation purposes, the existence of genetically distinct clusters and geographically localised chloroplast haplotypes suggests that the concept of provenance should be taken into account when formulating augmentation or reintroduction strategies. Furthermore, the potential lack of seed dispersal and seedling establishment means that ex-situ approaches to seed and seedling management may have to be considered.