97 resultados para REAL-TIME MEASUREMENT
Resumo:
Cells subjected to various forms of stress have been shown to induce bystander responses in nontargeted cells, thus extending the stress response to a larger population. However, the mechanism(s) of bystander responses remains to be clearly identified, particularly for photodynamic stress. Oxidative stress and cell viability were studied on the spatial and temporal levels after photodynamic targeting of a subpopulation of EMT6 murine mammary cancer cells in a multiwell plate by computerized time-lapse fluorescence microscopy. In the targeted population a dose-dependent loss of cell viability was observed in accordance with increased oxidative stress. This was accompanied by increased oxidative stress in bystander populations but on different time scales, reaching a maximum more rapidly in targeted cells. Treatment with extracellular catalase, or the NADPH oxidase inhibitor diphenyleneiodinium, decreased production of reactive oxygen species (ROS) in both populations. These effects are ascribed to photodynamic activation of NADPH-oxidase in the targeted cells, resulting in a rapid burst of ROS formation with hydrogen peroxide acting as the signaling molecule responsible for initiation of these photodynamic bystander responses. The consequences of increased oxidative stress in bystander cells should be considered in the overall framework of photodynamic stress.
Resumo:
In this investigation Raman spectroscopy was shown to be a method that could be used to monitor the polymerisation of PMMA bone cement. Presently there is no objective method that orthopaedic surgeons can use to quantify the curing process of cement during surgery. Raman spectroscopy is a non-invasive, non-destructive technique that could offer such an option. Two commercially available bone cements (Palacos® R and SmartSet® HV) and different storage conditions (4 and 22°C) were used to validate the technique. Raman spectroscopy was found to be repeatable across all conditions with the completion of the polymerisation process particularly easy to establish. All tests were benchmarked against current temperature monitoring methods outlined in ISO and ASTM standards. There was found to be close agreement with the standard methods and the Raman spectroscopy used in this study.
Resumo:
We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion-extension, forearm pronation-supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60A degrees visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.
Resumo:
Climate change is perhaps the most pressing and urgent environmental issue facing the world today. However our ability to predict and quantify the consequences of this change is severely limited by the paucity of in situ oceanographic measurements. Marine animals equipped with sophisticated oceanographic data loggers to study their behavior offer one solution to this problem because marine animals range widely across the world's ocean basins and visit remote and often inaccessible locations. However, unlike the information being collected from conventional oceanographic sensing equipment, which has been validated, the data collected from instruments deployed on marine animals over long periods has not. This is the first long-term study to validate in situ oceanographic data collected by animal oceanographers. We compared the ocean temperatures collected by leatherback turtles (Dermochelys coriacea) in the Atlantic Ocean with the ARGO network of ocean floats and could find no systematic errors that could be ascribed to sensor instability. Animal-borne sensors allowed water temperature to be monitored across a range of depths, over entire ocean basins, and, importantly, over long periods and so will play a key role in assessing global climate change through improved monitoring of global temperatures. This finding is especially pertinent given recent international calls for the development and implementation of a comprehensive Earth observation system ( see http://iwgeo.ssc.nasa.gov/documents.asp?s=review) that includes the use of novel techniques for monitoring and understanding ocean and climate interactions to address strategic environmental and societal needs.