151 resultados para RC slabs
Resumo:
This paper summarises the results obtained from non-linear finite-element analysis (NLFEA) of a series of reinforced-concrete one-way slabs with various boundary conditions representative of a bridge deck slab strip in which compressive membrane action governs the structural behaviour. The application of NLFEA for the optimum analysis and design of in-plane restrained concrete slabs is explored. An accurate material model and various equation solution methods were assessed to find a suitable finite-element method for the analysis of concrete slabs in which arching action occurs. Finally, the results from the NLFEA are compared and validated with those from various experimental test data. Significantly, the numerical analysis was able to model the arching action that occurred as a result of external in-plane restraint at the supports and which enhanced the ultimate strength of the slab. The NLFEA gave excellent predictions for the ultimate load-carrying capacity and far more accurate predictions than those obtained using standard flexural or elastic theory.
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
In the investigation of real loading capacities in concrete bridge deck slabs,the study of this type of structure was carried out with consideration of compressive membrane action.A series of experimental test of steel-concrete bridge structures was developed with the analysis of influences from the varying of structural parameters on loading capacities,including reinforcement percentages,supporting beam sizes and concrete compressive strength.Through the study of the experimental results,it was found that the real structural loading capacities are larger than those predicted by current design methods.Therefore,based on the previous research,a prediction method for loading capacities of concrete bridge deck slabs was established with consideration of CMA,which was built based on the plastic ultimate analysis.In this method,the lateral restraint stiffness subjected by concrete bridge deck slabs was provided.The proposed theoretical model is capable of predicting the loading capacities of this type of structure accurately with comparison of results from several bridge deck experimental tests.
Resumo:
This research studies the structural behaviour of bridge deck slabs under static patch loads in steel–concrete composite bridges and investigates compressive membrane action (CMA) in concrete bridge decks slabs, which governs the structural behaviour. A non-linear 3D finite element analysis models was developed using ABAQUS 6.5 software packages. Experimental data from one-span composite bridge structures are used to validate and calibrate the proposed FEM models. A series of parametric studies is conducted. The analysis results are discussed and conclusions on the behaviour of the bridge decks are presented.
Resumo:
In the last 50 years, many bridges have been built as composite structures with decks of reinforced concrete that are supported by longitudinal steel beams. The presence of the longitudinal steel beams and the unloaded area of concrete slab cause the loaded deck slabs to be restrained against lateral expansion. As a result, a compressive membrane thrust is developed. In experimental tests, the authors built a series of one-third scale steel-concrete composite bridge models with several varying structural parameters, including concrete compressive strength, reinforcement percentage, and the size of steel supporting beams. After comparing the results of different models, the influence of these structural parameters on the amount of compressive membrane action in the deck slab was evaluated. Furthermore, the improvement of an existing theoretical model provided accurate predictions for the loading-carrying capacities.