39 resultados para RADIOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of Li-7(p,n)Be-7 reactions using Cu and CH primary and LiF secondary targets were performed using the VULCAN laser [C.N. Danson , J. Mod. Opt. 45, 1653 (1997)] with intensities up to 3x10(19) W cm(-2). The neutron yield was measured using CR-39 plastic track detector and the yield was up to 3x10(8) sr(-1) for CH primary targets and up to 2x10(8) sr(-1) for Cu primary targets. The angular distribution of neutrons was measured at various angles and revealed a relatively anisotropic neutron distribution over 180degrees that was greater than the error of measurement. It may be possible to exploit such reactions on high repetition, table-top lasers for neutron radiography. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The past few years have seen remarkable progress in the development of laser-based particle accelerators. The ability to produce ultrabright beams of multi-megaelectronvolt protons routinely has many potential uses from engineering to medicine, but for this potential to be realized substantial improvements in the performances of these devices must be made. Here we show that in the laser-driven accelerator that has been demonstrated experimentally to produce the highest energy protons, scaling laws derived from fluid models and supported by numerical simulations can be used to accurately describe the acceleration of proton beams for a large range of laser and target parameters. This enables us to evaluate the laser parameters needed to produce high-energy and high-quality proton beams of interest for radiography of dense objects or proton therapy of deep-seated tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a 3x10(19) W/cm(2) laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude similar to 10(4) A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in the XUV mass absorption coefficient of liquid aluminium, produced by high-power-laser shock-compression, is measured using XUV laser radiography. At a photon energy of 63 eV a change in the mass absorption coefficient by up to a factor of similar to2.2 is determined at densities close to twice that of solid and electron temperatures of the order of 1 eV. Comparison with hydrodynamic simulations indicate that the absorption coefficient scales with density as rho (1.3 +/-0.2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type of submicron ion radiography designed to image low-contrast objects, including nanofoils, membranes and biological structures, is proposed. It is based on femtosecond-laser-driven-cluster- plasma source of multicharged ions and polymer dosimeter film CR-39. The intense isotropic ion flow was produced by femtosecond Ti:Sa laser pulses with intensity similar to 4x10(17) W/cm(2) absorbed in the supersonic jet of the mixed He and CO2 gases. Two Focusing Spectrometers with Spatial Resolution (FSSR) were used to measure X-ray spectra of H-and He-like multicharged oxygen ions. The spectra testify that ions with energy more than 300 keV were radiated in different directions from the plasma source. High contrast ion radiography images were obtained for 2000 dpi metal mesh, 1 mu m polypropylene and 100 nm Zr foils as well as for the different biological objects. Images were recorded on a 1 mm thick CR-39 detector, placed in contact with back surface of the imaged samples at the distances 140 -160 mm from the ion source. The spatial resolution of the image no worse than 600 nm was provided. A difference in object thickness of 100 nm was very well resolved for both Zr and polymer foils. The ion radiography images recorded at different angles from the source, demonstrated almost uniform spatial distribution of ion with total number of 10(8) per shot. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct observation and full characterization of a phase space electron hole (EH) generated during laser-matter interaction is presented. This structure, propagating in a tenuous, nonmagnetized plasma, has been detected via proton radiography during the irradiation with a ns laser pulse (I?2 ˜ 1014 W/cm2) of a gold hohlraum. This technique has allowed the simultaneous detection of propagation velocity, potential, and electron density spatial profile across the EH with fine spatial and temporal resolution allowing a detailed comparison with theoretical and numerical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The onset of filamentation, following the interaction of a relatively long (tau(L) similar or equal to 1 ns) and intense (I-L similar or equal to 5 x 10(14) W/cm(2)) laser pulse with a neopentane filled gas bag target, has been experimentally studied via the proton radiography technique, in conditions of direct relevance to the indirect drive inertial confinement fusion scheme. The density gradients associated with filamentation onset have been spatially resolved yielding direct and unambiguous evidence of filament formation and quantitative information about the filamentation mechanism in agreement with previous theoretical modelings. Experimental data confirm that, once spatially smoothed laser beams are used, filamentation is not a relevant phenomenon during the heating laser beams propagation through typical hohlraum gas fills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.