83 resultados para Quantum Entanglement


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An entangled two-mode coherent state is studied within the framework of 2 x 2-dimensional Hilbert space. An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost. It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of teleportation less than the classical limit 2/3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a scheme to physically interface superconducting nanocircuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a nonclassical state of an infinite dimensional system to a pair of superconducting charge qubits. This setup is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entanglement transfer processes from a continuous-variable (CV) to a qubit system have primary importance in quantum information processing due to some practical implications in the realization of a quantum network. A CV system can propagate entanglement while a qubit system is easy to manipulate. We study conditions to entangle two atomic qubits with a two-mode squeezed field driving two cavities containing the atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the conditions to entangle two qubits interacting with local environments driven by a continuous-variable correlated field. We find the conditions to transfer the entanglement from the driving field to the qubits both in dynamical and steady-state cases. We see how the quantum correlations initially present in the driving field play a critical role in the entanglement-transfer process. The system we treat is general enough to be adapted to different physical setups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose schemes for entanglement concentration and purification for qubit systems encoded in flying atomic pairs. We use cavity-quantum electrodynamics as an illustrative setting within which our proposals can be implemented. Maximally entangled pure states of qubits can be produced as a result of our protocols. In particular, the concentration protocol yields Bell states with the largest achievable theoretical probability while the purification scheme produces arbitrarily pure Bell states. The requirements for the implementation of these protocols are modest, within the state of the art, and we address all necessary steps in two specific setups based on experimentally mature microwave technology.