92 resultados para Pulsating heat pipe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Ten cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine with an external cylinder diameter of 100 mm and fin lengths of 10 to 50 mm. The fins of each cylinder were gravity die cast in aluminum allow. Each cylinder was electrically heated and mounted in a wind tunnel which subjected it to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. In addition to the determination of an overall heat transfer coefficient, the distribution of cooling around the circumference of each cylinder was also studied. Not surprisingly, the cooling was found to be greatest on the front of the cylinder, which was the side first impinged by the air stream. The cooling of the rear of the cylinder was better than might have been expected and this is quantified.