124 resultados para Proto-Oncogene Proteins c-mdm2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1(flfl)), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.

OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.

DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.

MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.

RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.

CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between the Bcr-Abl kinase inhibitor STI-571 (imatinib mesylate) and a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-6, were investigated in STI-571-sensitive and -resistant human chronic myeloid leukemia (CML) cells. Cotreatment of PBOX-6 with STI-571 induced significantly more apoptosis in Bcr-Abl-positive CML cell lines (K562 and LAMA-84) than either drug alone (P < 0.01). Cell cycle analysis of propidium iodide-stained cells showed that STI-571 significantly reduced PBOX-6-induced G2M arrest and polyploid formation with a concomitant increase in apoptosis. Similar results were obtained in K562 CML cells using lead MTAs (paclitaxel and nocodazole) in combination with STI-571. Potentiation of PBOX-6-induced apoptosis by STI-571 was specific to Bcr-Abl-positive leukemia cells with no cytoxic effects observed on normal peripheral blood cells. The combined treatment of STI-571 and PBOX-6 was associated with the down-regulation of Bcr-Abl and repression of proteins involved in Bcr-Abl transformation, namely the antiapoptotic proteins Bcl-x(L) and Mcl-1. Importantly, PBOX-6/STI-571 combinations were also effective in STI-571-resistant cells. Together, these findings highlight the potential clinical benefits in simultaneously targeting the microtubules and the Bcr-Abl oncoprotein in STI-571-sensitive and -resistant CML cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To determine whether Abl immunoreactivity correlates with grade and cell kinetics (apoptosis and mitosis) in chondrosarcoma.

METHODS: Sections from 16 chondrosarcomas were stained immunohistochemically using a polyclonal antibody to the c-Abl/Bcr-Abl oncoprotein. Apoptotic indices and mitotic indices were assessed in all tumours. Sections from 24 paraffin wax blocks of human fetal rib (gestational ages, 15-42 weeks) were also stained to determine whether the Abl protein is synthesised consistently throughout endochondral ossification.

RESULTS: Abl staining in immature fetal rib chondrocytes at all stages of development was predominantly nuclear, and 70% of cells showed moderate to strong staining. Abl immunoreactivity was minimal or absent in hypertrophic chondrocytes about to undergo apoptosis at the growth plate. There was strong Abl staining in grade 1 and grade 2 chondrosarcomas but staining was greatly reduced or absent in grade 3 chondrosarcomas. There was a very significant linear correlation between apoptotic index (mean, 0.68%; range, 0-3.2%) and mitotic index (mean, 0.23%; range, 0-0.9%), and both indices were significantly lower in grade 1 than in grade 2 and grade 3 chondrosarcomas.

CONCLUSIONS: These data suggest that abl gene expression is associated with differentiation and apoptosis inhibition in fetal and neoplastic chondrocytes. However, these putative effects cannot be ascribed solely to the Abl protein, because several additional factors contribute to the regulation of both differentiation and apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy.

METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras.

CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is an urgent need to identify molecular signatures in small cell lung cancer (SCLC) that may select patients who are likely to respond to molecularly targeted therapies. In this study, we investigate the feasibility of undertaking focused molecular analyses on routine diagnostic biopsies in patients with SCLC.

Methods: A series of histopathologically confirmed formalin-fixed, paraffin-embedded SCLC specimens were analysed for epidermal growth factor receptors (EGFR), KRAS, NRAS and BRAF mutations, ALK gene rearrangements and MET amplification. EGFR and KRAS mutation testing was evaluated using real time polymerase chain reaction (RT-PCR cobas®), BRAF and NRAS mutations using multiplex PCR and capillary electrophoresis-single strand conformation analysis, and ALK and MET aberrations with fluorescent in situ hybridization. All genetic aberrations detected were validated independently.

Results: A total of 105 patients diagnosed with SCLC between July 1990 and September 2006 were included. 60 (57 %) patients had suitable tumour tissue for molecular testing. 25 patients were successfully evaluated for all six pre-defined molecular aberrations. Eleven patients failed all molecular analysis. No mutations in EGFR, KRAS and NRAS were detected, and no ALK gene rearrangements or MET gene amplifications were identified. A V600E substitution in BRAF was detected in a Caucasian male smoker diagnosed with SCLC with squamoid and glandular features.

Conclusion: The paucity of patients with sufficient tumour tissue, quality of DNA extracted and low frequency of aberrations detected indicate that alternative molecular characterisation approaches are necessary, such as the use of circulating plasma DNA in patients with SCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Lethal-7 (let-7) is a tumour suppressor miRNA which acts by down-regulating several oncogenes including KRAS. A single-nucleotide polymorphism (rs61764370, T > G base substitution) in the let-7 complementary site 6 (LCS-6) of KRAS mRNA has been shown to predict prognosis in early-stage colorectal cancer (CRC) and benefit from anti-epidermal growth factor receptor monoclonal antibodies in metastatic CRC. Patients and methods: We analysed rs61764370 in EXPERT-C, a randomised phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX plus or minus cetuximab in locally advanced rectal cancer. DNA was isolated from formalin-fixed paraffin-embedded tumour tissue and genotyped using a PCR-based commercially available assay. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms. Results: A total of 155/164 (94.5%) patients were successfully analysed, of whom 123 (79.4%) and 32 (20.6%) had the LCS-6 TT and LCS-6 TG genotype, respectively. Carriers of the G allele were found to have a statistically significantly higher rate of complete response (CR) after neoadjuvant therapy (28.1% versus 10.6%; P = 0.020) and a trend for better 5-year progression-free survival (PFS) [77.4% versus 64.5%: hazard ratio (HR) 0.56; P = 0.152] and overall survival (OS) rates (80.3% versus 71.9%: HR 0.59; P = 0.234). Both CR and survival outcomes were independent of the use of cetuximab. The negative prognostic effect associated with KRAS mutation appeared to be stronger in patients with the LCS-6 TT genotype (HR PFS 1.70, P = 0.078; HR OS 1.79, P = 0.082) compared with those with the LCS-6 TG genotype (HR PFS 1.33, P = 0.713; HR OS 1.01, P = 0.995). Conclusion: This analysis suggests that rs61764370 may be a biomarker of response to neoadjuvant treatment and an indicator of favourable outcome in locally advanced rectal cancer possibly by mitigating the poor prognosis of KRAS mutation. In this setting, however, this polymorphism does not appear to predict cetuximab benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A downstream target of the Wnt pathway, neurone glial-related cell adhesion molecule (Nr-CAM) has recently been implicated in human cancer development. However, its role in colorectal cancer (CRC) pathobiology and clinical relevance remains unknown. In this study, we examined the clinical significance of Nr-CAM protein expression in a retrospective series of 428 CRCs using immunohistochemistry and tissue microarrays. Cox proportional hazards regression was used to calculate hazard ratios (HR) of mortality according to various clinicopathological features and molecular markers. All CRC samples were immunoreactive for Nr-CAM protein expression, compared to 10 / 245 (4%) matched normal tissue (P <0.0001). Of 428 CRC samples, 97 (23%) showed Nr-CAM overexpression, which was significantly associated with nodal (P = 0.012) and distant (P = 0.039) metastasis, but not with extent of local invasion or tumor size. Additionally, Nr-CAM overexpression was associated with vascular invasion (P = 0.0029), p53 expression (P = 0.036), and peritoneal metastasis at diagnosis (P = 0.013). In a multivariate model adjusted for other clinicopathological predictors of survival, Nr-CAM overexpression correlated with a significant increase in disease-specific (HR 1.66; 95% confidence interval 1.11-2.47; P = 0.014) and overall mortality (HR 1.57; 95% confidence interval 1.07-2.30; P = 0.023) in advanced but not early stage disease. Notably, 5-fluorouracil-based chemotherapy conferred significant survival benefit to patients with tumors negative for Nr-CAM overexpression but not to those with Nr-CAM overexpressed tumors. In conclusion, Nr-CAM protein expression is upregulated in CRC tissues. Nr-CAM overexpression is an independent marker of poor prognosis among advanced CRC patients, and is a possible predictive marker for non-beneficence to 5-fluorouracil- based chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.