36 resultados para Protein Synthesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 +/- 112.08%, 3 h = 124.7 +/- 15.96% and 6 h = 129.2 +/- 0%) and mVps34 (3 h = 68.8 +/- 15.1% and 6 h = 36.0 +/- 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 +/- 2.29% and 3 h = 47.0 +/- 6.65%; mVps34 3 h = 24.5 +/- 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI(3) P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock- down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twenty-four shed-reared lambs were each infected orally with 250 metacercariae of Fasciola hepatica, using either the triclabendazole (TCBZ)-sensitive Cullompton isolate or the TCBZ-resistant Sligo isolate. Twelve weeks after infection the lambs were treated with TCBZ (10 mg/kg) or with the experimental fasciolicide, Compound Alpha (Cpd alpha), a benzimidazole derivative of TCBZ (15 mg/kg). The lambs were euthanised 48,72 and 96 h after TCBZ treatment, or 24, 48 and 72 h after Cpd a treatment, and flukes were collected from the liver and/or gall bladder of each animal. Untreated animals harbouring 12-week infections were euthanised 24 h after administration of anthelmintic to the treatment groups, and the untreated flukes provided control material. A semi-quantitative assessment of the degree of histological change induced by the two drugs after different times of exposure was achieved by scoring the intensity of three well-defined lesions that developed in the testes and uteri of a representative sample of flukes from each lamb. In general, it was found that in those tissues where active meiosis and/or mitosis occurred (testis, ovary, and vitelline follicles), there was progressive loss of cell content due to apparent failure of cell division to keep pace with expulsion of the mature or effete products. Further, actively dividing cell types tended to become individualised, rounded and condensed, characteristic of apoptotic cell death. Protein synthetic activity was apparently inhibited in the Mehlis' secretory cells. In the uterus, where successful formation of shelled eggs represents the culmination of a complex sequence of cytokinetic, cytological and synthetic activity involving the vitelline follicles, the ovary and the Mehlis' gland, histological evidence indicating failure of ovigenesis was evident from 24 h post-treatment onwards. The development of these lesions may be related to the known antitubulin activity of the benzimidazole class of anthelmintics, to the induction of apoptosis in cells where mitosis or meiosis has aborted due to failure of spindle formation, and to drug-induced inhibition of protein synthesis. The semi-quantitative findings indicated that Cpd a is slightly less efficacious than TCBZ itself in causing histological damage to the reproductive structures of TCBZ-sensitive flukes, and that, like TCBZ, it caused no histological damage in flukes of the TCBZ-resistant isolate. This study illustrates the potential utility of histological techniques for conveniently screening representative samples of flukes in field trials designed to validate instances of drug resistance or to test the efficacy of new products against known drug-resistant and drug-susceptible fluke isolates. It also provides reference criteria for drug-induced histopathological changes in fluke reproductive structures which may aid interpretation of TEM findings. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the active sulphoxide metabolite of the fasciolicide triclabendazole (Fasinex, Ciba-Geigy) on the vitelline cells of Fusciola hepatica were determined in vitro by transmission electron microscopy using both intact flukes and tissue-slice material. At a triclabendazole concentration of 15 mu g/ml the vitelline cells of intact flukes showed ultrastructural changes only after prolonged incubation periods (12-24 h). The changes observed were a swelling of the granular endoplasmic reticulum (GER) cisternae with decreased ribosomal covering in the intermediate-type cells and condensation of chromatin and disappearance of the nucleolus in the nucleus of the stem cell. Similar changes were evident more quickly (by 6 h) in whole flukes treated at the higher concentration of 50 mu g/ml. The shell globule clusters were loosely packed in the intermediate type-2 cells, and the number of intermediate type-1 cells declined with more prolonged incubation. Disruption of the nurse-cell cytoplasm was also observed from 12 h onwards. After only 6 h incubation of tissue-slice material at 50 mu g/ml, intermediate type-1 cells were absent, shell globule clusters in mature cells were loosely packed and the nurses cell cytoplasm was badly disrupted. By 12 h the vitelline cells were vacuolated and grossly abnormal. The results are discussed in relation to postulated actions of triclabendazole against the microtubule component of the cytoskeleton and against protein synthesis in the fluke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modes of action of fasciolicides are described. Closantel and other salicylanilides interfere with energy metabolism by uncoupling oxidative phosphorylation in the fluke. Other fasciolicides are believed to have a metabolic action-halogenated phenols (via uncoupling) and clorsulon (via inhibition of glycolysis)-but direct evidence is lacking. Benzimidazoles (in particular, riclabendazole) bind to fluke tubulin and disrupt microtubule-based processes. Diamphenethide inhibits protein synthesis in the fluke. Other potential drug actions may contribute to overall drug efficacy. In particular, a number of fasciolicides-salicylanilides, phenols, diamphenethide-induce a rapid paralysis of the fluke, so their action may have a neuromuscular basis, although the actions remain ill-defined. Resistance to salicylanilides and triclabendazole has been detected in the field, although drug resistance does not appear to be a major problem yet. Strategies to minimize the development of resistance include the use of synergistic drug combinations, together with the design of integrated management programmes and the search for alternatives to drugs, in particular, vaccines. (C) 1999 Harcourt Publishers Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrastructural changes to the tegument of 5-week-old, 3-week-old and freshly-excysted Fasciola hepatica following in vitro incubation with the deacetylated (amine) metabolite of diamphenethide (DAMD, 10 mu gml(-1)) were examined by transmission electron microscopy, A similar sequence of tegumental changes occurred in all three age groups of fluke, although, with increasing fluke age, the time before onset increased and the damage became more extensive. The 5-week-old flukes showed an initial stress response after 3 h, typified by blebbing of the apical plasma membrane, formation of microvilli and an accumulation and accelerated release of secretory bodies at the tegumental apex, as well as swelling of the basal infolds, The swelling increased in extent with progressively longer periods of incubation in DAMD, leading to extreme edema and sloughing of the tegument after 9 h. The 3-week-old flukes showed a stress response and swelling of the basal infolds after only 1.5 h, although sloughing of the tegument did not occur until after 9 h. In the freshly-excysted metacercaria, a stress response and some sloughing of the tegument were evident after only 0.5 h. At all stages of development, the ventral tegument was more severely affected than the dorsal, Changes also occurred to the tegumental cells which were indicative of a disruption in the synthesis and release of tegumental secretory bodies: the amount of GER became reduced, the cisternae became swollen and their ribosomal covering decreased, the Golgi complexes disappeared from the cells and the numbers of secretory bodies in the cells also decreased, The heterochromatin content of the nuclei increased and eventually the tegumental cells began to break down, Again, the changes became apparent more rapidly at the earlier stages of development. The ultrastructural changes to the tegument are linked to a possible mode of action for diamphenethide as an inhibitor of protein synthesis. In turn, the results may help to explain the drug's high efficacy against juvenile stages of F. hepatica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RarA is an AraC-type regulator in Klebsiella pneumoniae, which, when overexpressed, confers a low-level multidrug-resistant (MDR) phenotype linked to the upregulation of both the acrAB and oqxAB efflux genes. Increased rarA expression has also been shown to be integral in the development of tigecycline resistance in the absence of ramA in K. pneumoniae. Given its phenotypic role in MDR, microarray analyses were performed to determine the RarA regulon. Transcriptome analysis was undertaken using strains Ecl8?rarA/pACrarA-2 (rarA-expressing construct) and Ecl8?rarA/pACYC184 (vector-only control) using bespoke microarray slides consisting of probes derived from the genomic sequences of K. pneumoniae MGH 78578 (NC_009648.1) and Kp342 (NC_011283.1). Our results show that rarA overexpression resulted in the differential expression of 66 genes (42 upregulated and 24 downregulated). Under the COG (clusters of orthologous groups) functional classification, the majority of affected genes belonged to the category of cell envelope biogenesis and posttranslational modification, along with genes encoding the previously uncharacterized transport proteins (e.g., KPN_03141, sdaCB, and leuE) and the porin OmpF. However, genes associated with energy production and conversion and amino acid transport/metabolism (e.g., nuoA, narJ, and proWX) were found to be downregulated. Biolog phenotype analyses demonstrated that rarA overexpression confers enhanced growth of the overexpresser in the presence of several antibiotic classes (i.e., beta-lactams and fluoroquinolones), the antifungal/antiprotozoal compound clioquinol, disinfectants (8-hydroxyquinoline), protein synthesis inhibitors (i.e., minocycline and puromycin), membrane biogenesis agents (polymyxin B and amitriptyline), DNA synthesis (furaltadone), and the cytokinesis inhibitor (sanguinarine). Both our transcriptome and phenotypic microarray data support and extend the role of RarA in the MDR phenotype of K. pneumoniae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mycotoxin alternariol (AOH) is an important contaminant of fruits and cereal products. The current study sought to address the effect of a non-toxic AOH concentration on the proteome of the steroidogenic H295R cell model. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC) coupled to 1D-SDS-PAGE-LC-MS/MS was applied to subcellular-enriched protein samples. Gene ontology (GO) and ingenuity pathway analysis (IPA) were further carried out for functional annotation and identification of protein interaction networks. Furthermore, the effect of AOH on apoptosis and cell cycle distribution was also determined by the use of flow cytometry analysis. This work identified 22 proteins that were regulated significantly. The regulated proteins are those involved in early stages of steroid biosynthesis (SOAT1, NPC1, and ACBD5) and C21-steroid hormone metabolism (CYP21A2 and HSD3B1). In addition, several proteins known to play a role in cellular assembly, organization, protein synthesis, and cell cycle were regulated. These findings provide a new framework for studying the mechanisms by which AOH modulates steroidogenesis in H295R cell model. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Bdellovibrio bacteriovorus HD100 must regulate genes in response to a variety of environmental conditions as it enters, preys upon and leaves other bacteria, or grows axenically without prey. In addition to "housekeeping" sigma factors, its genome encodes several alternate sigma factors, including 2 Group IV-RpoE-like proteins, which may be involved in the complex regulation of its predatory lifestyle.

RESULTS: We find that one sigma factor gene, bd3314, cannot be deleted from Bdellovibrio in either predatory or prey-independent growth states, and is therefore possibly essential, likely being an alternate sigma 70. Deletion of one of two Group IV-like sigma factor genes, bd0881, affects flagellar gene regulation and results in less efficient predation, although not due to motility changes; deletion of the second, bd0743, showed that it normally represses chaperone gene expression and intriguingly we find an alternative groES gene is expressed at timepoints in the predatory cycle where intensive protein synthesis at Bdellovibrio septation, prior to prey lysis, will be occurring.

CONCLUSIONS: We have taken the first step in understanding how alternate sigma factors regulate different processes in the predatory lifecycle of Bdellovibrio and discovered that alternate chaperones regulated by one of them are expressed at different stages of the lifecycle.