113 resultados para Protein Inhibitors of Activated STAT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of dye molecular charges on their adsorption from solution was investigated by using different types of activated carbon adsorbents. Two types of model systems were used representing cationic and anionic dyes. Screening investigations using single point tests were used throughout the study. Cationic dyes, of which Methylene Blue is an example, showed a higher adsorption tendency towards activated carbon over anionic dyes represented by an ate-type reactive compound. Of the number of activated carbons tested, only one of the adsorbents showed an exception to this behavior, and a good relation was observed between Methylene Blue capacity and activated carbon performance. The high capacity of cationic dyes in comparison to anionic dyes was also evident in the results obtained by a preliminary kinetic study carried out on the selected systems. Surface net charge of activated carbon and the nature of attractions between the molecules were suggested to be one of the reasons attributed for this behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Adsorption behaviour of reactive dyes in fixed-bed adsorber was evaluated in this work. The characteristics of mass transfer zone (MTZ), where adsorption in column occurs, were affected by carbon bed depth and influent dye concentration. The working lifetime (t(x)) of MTZ, the height of mass transfer zone (HMTZ), the rate of mass transfer zone (RMTZ), and the column capacity at exhaustion (q(column)) were estimated for the removal of remazol reactive yellow and remazol reactive black by carbon adsorber. The results showed that column capacity calculated at 90% of column exhaustion was lower than carbon capacity obtained from equilibrium studies. This indicated that the capacity of activated carbon was not fully utilized in the fixed-bed adsorber. The bed-depth service time model (BDST) was applied for analysis of reactive yellow adsorption in the column. The adsorption capacity of reactive yellow calculated at 50% breakthrough point (No) was found to be 0.1 kg kg(-1) and this value is equivalent to about 14% of the available carbon capacity. The results of this study indicated the applicability of fixed-bed adsorber for removing remazol reactive yellow from solution. (C) 2008 Elsevier B.V. All rights reserved.