36 resultados para Production methods
Resumo:
Aims: The objectives of this study were to produce Salmonella-specific peptide ligands by phage display biopanning and evaluate their use for magnetic separation (MS).
Methods and Results: Four phage display biopanning rounds were performed and the peptides expressed by the two most Salmonella-specific (on the basis of phage binding ELISA results) phage clones, MSal020401 and MSal020417, were chemically synthesized and coupled to MyOne™ tosylactivated Dynabeads®. Peptide capture capability for whole Salmonella cells from non-enriched broth cultures was quantified by MS + plate counts and MS + Greenlight™ detection, and compared to capture capability of anti-Salmonella (antibody-coated) Dynabeads®. MS + Greenlight™ gave a more comprehensive picture of capture capability than MS + plate counts and showed that Peptide MSal020417-coated beads exhibited at least similar, if not better, capture capability to anti-Salmonella Dynabeads® (mean capture values of 36.0 ± 18.2 % and 31.2 ± 20.1 %, respectively, over Salmonella spp. concentration range 3 x 101 - 3 x 106 cfu ml-1) with minimal cross-reactivity (= 1.9 %) to three other foodborne bacteria.
Conclusions: One of the phage display-derived peptide ligands was demonstrated by MS + Greenlight™ to be a viable antibody-alternative for MS of Salmonella spp.
Significance and Impact of Study: This study demonstrates an antibody-free approach to Salmonella detection and opens substantial possibilities for more rapid tests for this bacterium.
Resumo:
Large parts of the periodic table cannot be cooled by current laser-based methods. We investigate whether zero energy fragmentation of laser cooled fluorides is a potential source of ultracold fluorine atoms. We report new ab initio calculations on the lowest electronic states of the BeF diatomic molecule including spin-orbit coupling, the calculated minima for the valence electronic states being within 1 pm of the spectroscopic values. A four colour cooling scheme based on the A2? ? X2S+ transition is shown to be feasible for this molecule. Multi-Reference Configuration Interaction (MRCI) potentials of the lowest energy Rydberg states are reported for the first time and found to be in good agreement with experimental data. A series of multi-pulse excitation schemes from a single rovibrational level of the cooled molecule are proposed to produce cold fluorine atoms.
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.
Resumo:
With the advancement of flexible fixture and flexible tooling, mixed production has become possible for aircraft assembly as the manufacturing processes of different aircraft/sub-assembly models are similar. However, it is a great challenge to model the problem and provide a practical solution due to the low volume and complex constraints of aircraft assemblies. To tackle this problem, this work proposes a methodology for designing the mixed production system, and a new scheduling approach is proposed by combined backward and forward scheduling methods. These methods are validated through a real-life industrial case study. Simulation results show that the number of workstations and the cycle time for making a fuselage can be reduced by 50% and 39% respectively with the newly designed mixed-model system.
Resumo:
This paper shows that, in production economies, the generalized serial social choice functions defined by Shenker (1992) are securely implementable (in the sense of Saijo et al., 2007) and that they include the well-known fixed path social choice functions.
Resumo:
Plastic wastes, and particularly plastic bags and sachets, are a major concern for urban and rural environment in African countries. In the last years some actions have been started for the plastic recycling like the artisanal production of paving blocks with melted plastic bags and sand, albeit with differences in production processes. Nevertheless, the environmental and economic impact of such activities is still to be confirmed. The aim of this study is to propose a methodology for assessing and comparing the environmental and energetic performances of artisanal methods, and for defining the overall quality of the produced blocks. This methodology has been shaped through the analysis of
production processes operated by artisans/small enterprises in West Africa and through physic-mechanical tests on the blocks. A questionnaire which allows an insight into the process and on the product has been developed and tested over five processes. Results show that a high input energy level is observed through all the processes, while considerable savings of energy could be achieved. Moreover, tests results confirmed the importance of the utilised plastic concerning thermal dilatation, mechanical resistance at higher temperature and cooling-shrinkage effects. In conclusion, doubts remain about the technical and environmental effectiveness of the sampled experiences, durability of the products and sustainability of this approach. Nevertheless, being the collection and recycling of plastic wastes a potential income generation activity for marginalised social groups in urban environment, a process optimisation could improve the impact of blocks production. Alternative recycling activities should also be considered.
Resumo:
Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.
Resumo:
Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.
Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.
Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.
Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Resumo:
Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.
Resumo:
Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.
Resumo:
The use of a hydrated phosphonium ionic liquid, [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl, for the extraction of microalgæ lipids for biodiesel production, was evaluated using two microalgæ species, Chlorella vulgaris and Nannochloropsis oculata. The ionic liquid extraction was compared to the conventional Soxhlet, and Bligh & Dyer, methods, giving the highest extraction efficiency in the case of C. vulgaris, at 8.1%. The extraction from N. oculata achieved the highest lipid yield for Bligh & Dyer (17.3%), while the ionic liquid extracted 12.8%. Nevertheless, the ionic liquid extraction showed high affinity to neutral/saponifiable lipids, resulting in the highest fatty acid methyl esters (FAMEs)-biodiesel yield (4.5%) for C. vulgaris. For N. oculata, the FAMEs yield of the ionic liquid and Bligh & Dyer extraction methods were similar (>8%), and much higher than for Soxhlet (<5%). The ionic liquid extraction proved especially suitable for lipid extraction from wet biomass, giving even higher extraction yields than from dry biomass, 14.9% and 12.8%, respectively (N. oculata). Remarkably, the overall yield of FAMEs was almost unchanged, 8.1% and 8.0%, for dry and wet biomass. The ionic liquid extraction process was also studied at ambient temperature, varying the extraction time, giving 75% of lipid and 93% of FAMEs recovery after thirty minutes, as compared to the extraction at 100 °C for one day. The recyclability study demonstrated that the ionic liquid was unchanged after treatment, and was successfully reused. The ionic liquid used is best described as [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl·2H<inf>2</inf>O, where the water is not free, but strongly bound to the ions.
Resumo:
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.
Resumo:
The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under the dissolution curve (AUC) was used as a measure of the time during which a supersaturated concentration could be maintained, and for all systems, SFI formulations performed better than similar HME formulations.
Resumo:
Objectives: Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory–Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions.
Method: Solid dispersions were characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry) and spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods.
Key Findings: Spray drying permitted generation of amorphous solid dispersions to be produced across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug–polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples.
Conclusion: Using temperature–composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions.