80 resultados para Process Analytical Technology (PAT)
Resumo:
Aim. To identify birth technology competencies used by midwives to support women during the birthing process and to explore the concept of birth technology competence in midwifery practice in order to inform both education and practice. Objective. To define attributes of birth technology competence. Method. The Chinn and Kramer framework for concept analysis was used to examine sources including popular and professional literature, government reports and statutory regulation. The model allows for the exploration of three areas of experience, which interact to form the meaning of an idea or concept – feelings, values and attitudes associated with the concept, the symbolic label for the concept and the concept itself. Results. Exploration of the literature led to the development of exemplar cases that illuminate tentative attributes of the concept, contained within three domains – interpersonal skills, professional knowledge and clinical proficiency. Implications. Following testing in midwifery practice to ensure its transferability into the clinical context, the theoretical perspective developed here will provide a basis to inform education and practice in relation to the use of technology.
Resumo:
In this paper, we propose for the first time, an analytical model for short channel effects in nanoscale source/drain extension region engineered double gate (DG) SOI MOSFETs. The impact of (i) lateral source/drain doping gradient (d), (ii) spacer width (s), (iii) spacer to doping gradient ratio (s/d) and (iv) silicon film thickness (T-si), on short channel effects - threshold voltage (V-th) and subthreshold slope (S), on-current (I-on), off-current (I-on) and I-on/I-off is extensively analysed by using the analytical model and 2D device simulations. The results of the analytical model confirm well with simulated data over the entire range of spacer widths, doping gradients and effective channel lengths. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimised to achieve high values of on-currents. The present work provides valuable design insights in the performance of nanoscale DG Sol devices with optimal source/drain engineering and serves as a tool to optimise important device and technological parameters for 65 nm technology node and below. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.
The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.
Resumo:
The decision of the U.S. Supreme Court in 1991 in Feist Publications, Inc. v. Rural Tel. Service Co. affirmed originality as a constitutional requirement for copyright. Originality has a specific sense and is constituted by a minimal degree of creativity and independent creation. The not original is the more developed concept within the decision. It includes the absence of a minimal degree of creativity as a major constituent. Different levels of absence of creativity also are distinguished, from the extreme absence of creativity to insufficient creativity. There is a gestalt effect of analogy between the delineation of the not original and the concept of computability. More specific correlations can be found within the extreme absence of creativity. "[S]o mechanical" in the decision can be correlated with an automatic mechanical procedure and clauses with a historical resonance with understandings of computability as what would naturally be regarded as computable. The routine within the extreme absence of creativity can be regarded as the product of a computational process. The concern of this article is with rigorously establishing an understanding of the extreme absence of creativity, primarily through the correlations with aspects of computability. The understanding established is consistent with the other elements of the not original. It also revealed as testable under real-world conditions. The possibilities for understanding insufficient creativity, a minimal degree of creativity, and originality, from the understanding developed of the extreme absence of creativity, are indicated.
Resumo:
This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.
Resumo:
This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.
Resumo:
Paralytic shellfish poisoning (PSP) toxin monitoring in shellfish is currently performed using the internationally accredited AOAC mouse bioassay. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. The feasibility of using a surface plasmon resonance optical biosensor to detect PSP toxins in shellfish tissue below regulatory levels was examined. Three different PSP toxin protein binders were investigated: a sodium channel receptor (SCR) preparation derived from rat brains, a monoclonal antibody (GT13-A) raised to gonyautoxin 2/3, and a rabbit polyclonal antibody (R895) raised to saxitoxin (STX). Inhibition assay formats were used throughout. Immobilization of STX to the biosensor chip surface was achieved via amino-coupling. Specific binding and inhibition of binding to this surface was achieved using all proteins tested. For STX calibration curves, 0 - 1000 ng/mL, IC50 values for each binder were as follows: SCR 8.11 ng/mL; GT13-A 5.77 ng/mL; and R895 1.56 ng/mL. Each binder demonstrated a different cross-reactivity profile against a range of STX analogues. R895 delivered a profile that was most likely to detect the widest range of PSP toxins at or below the internationally adopted regulatory limits.
Resumo:
For high-technology entrepreneurs, attaining an appropriate level of investment to support new ventures is challenging as substantial investment is usually required prior to revenue generation. Consequently, entrepreneurs must present their firms as investment ready in the context of an uncertain market response and an absence of any trading history. Gaining tenancy within a business incubator can be advantageous to this process given that placement enhances entrepreneurial contact with potential investors whilst professional client advisors (CAs) use their expertise to assist in the development of a credible business plan. However, for the investment proposal to be successful, it must make sense to fund managers despite their lack of technological expertise and product knowledge. Thus, this article explores how incubator CAs and entrepreneurs act in concert to mould innovative ideas into plausible business plans that make sense to venture fund investors. To illustrate this process, we draw upon empirical evidence which suggests that CAs act as sense makers between venture fund managers (VFMs) and high-technology entrepreneurs, yet their role and influence appears undervalued. These findings have implications for entrepreneurial access to much needed funding and also for the identification of investment opportunities for VFMs. © 2011 Taylor & Francis.