71 resultados para Power Differential Scale


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and implementation of a differential 4-way power-combining amplifier operating at E-band. The proposed 4-way power combiner (4WPC) facilitates short interconnects to the PA cells, thereby resulting in reduced loss. Simple C-L-C and L-C networks are deployed in order to compensate inductive loading due to the routing lines that would otherwise introduce mismatch and subsequently increase overall loss. Realized in SiGe technology, the PA prototype delivered 13.2 dBm output-referred 1-dB compression point and 14.3 dBm saturated output power when operated from a single 3.3 V DC supply at 75 GHz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a multi-level wordline driver scheme is presented to improve SRAM read and write stability while lowering power consumption during hold operation. The proposed circuit applies a shaped wordline voltage pulse during read mode and a boosted wordline pulse during write mode. During read, the applied shaped pulse is tuned at nominal voltage for short period of time, whereas for the remaining access time, the wordline voltage is reduced to a lower level. This pulse results in improved read noise margin without any degradation in access time which is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during hold mode, the wordline voltage starts from a negative value and reaches zero voltage, resulting in a lower leakage current compared to conventional SRAM. Our simulations using TSMC 65nm process show that the proposed wordline driver results in 2X improvement in static read noise margin while the write margin is improved by 3X. In addition, the total leakage of the proposed SRAM is reduced by 10% while the total power is improved by 12% in the worst case scenario of a single SRAM cell. The total area penalty is 10% for a 128Kb standard SRAM array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent inhibition (LI) is a measure of reduced learning about a stimulus to which there has been prior exposure without any consequence. It therefore requires a comparison between a pre-exposed (PE) and a non-pre-exposed (NPE) condition. Since, in animals, LI is disrupted by amphetamines and enhanced by antipsychotics, LI disruption has been proposed as a measure of the characteristic attentional deficit in schizophrenia: the inability to ignore irrelevant stimuli. The findings in humans are, however, inconsistent. In particular, a recent investigation suggested that since haloperidol disrupted LI in healthy volunteers, and LI was normal in non-medicated patients with schizophrenia, the previous findings in schizophrenic patients were entirely due to the negative effects of their medication on LI (Williams et al., 1998). We conducted two studies of antipsychotic drug effects on auditory LI using a within-subject, parallel group design in healthy volunteers. In the first of these, single doses of haloperidol (1 mg. i.v.) were compared with paroxetine (20 mg p.o.) and placebo, and in the second, chlorpromazine (100 mg p.o.) was compared with lorazepam (2 mg. p.o.) and placebo. Eye movements, neuropsychological test performance (spatial working memory (SWM), Tower of London and intra/extra dimensional shift, from the CANTAB test battery) and visual analogue rating scales, were also included as other measures of attention and frontal lobe function. Haloperidol was associated with a non-significant reduction in LI scores, and dysphoria/akathisia (Barnes Akathisia Rating Scale) in three-quarters of the subjects. The LI finding may be explained by increased distractibility which was indicated by an increase in antisaccade directional errors in this group. In contrast, LI was significantly increased by chlorpromazine but not by an equally sedative dose of lorazepam (both drugs causing marked decreases in peak saccadic velocity). Paroxetine had no effect on LI, eye movements or CANTAB neuropsychological test performance. Haloperidol was associated with impaired SWM, which correlated with the degree of dysphoria/akathisia, but no other drug effects on CANTAB measures were detected. We conclude that the effect of antipsychotics on LI is both modality and pharmacologically dependent and that further research using a wider range of antipsychotic compounds is necessary to clarify the cognitive effects of these drugs, and to determine whether there are important differences between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents indepen- dent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.