203 resultados para Potent Inhibitors
Resumo:
The spacer structure of homobivalent quinazolinimes acting as potent acetyl-(AChE)- and butyrylcholinesterase (BChE) inhibitors was chemically modified introducing tertiary amine and acyl-amide moieties, and the activities at both ChEs were evaluated. Molecular docking was applied to explain the data and probe the capacity of the mid-gorge site of both ChEs. The novel spacer structures considerably alter the biological profile of bivalent quinazolinimines with regard to both inhibitory activity and selectivity. Mutual interaction of binding to the various sites of the enzymes was further investigated by applying also different spacer lengths and ring sizes of the alicycle of the tricyclic quinazolinimines. In order to achieve selectivity toward BChE and to improve inhibitory activities, the spacer structure was optimized and identified a highly potent and selective BChE inhibitor. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Inhibitors of Gly transporter type-1 (GlyT1) for the treatment of schizophrenia have been pursued on the basis of the NMDA receptor (R) hypofunction hypothesis, which stems largely from the observation that NMDAR antagonists induce symptoms that more closely mimic those characteristic of schizophrenia than do other classes of psychotic agents. GlyT1 is responsible for uptake of synaptic Gly, an NMDAR co-agonist amino acid, in neuronal populations throughout the forebrain. GlyT1 inhibition thereby potentiates NMDAR activity by increasing synaptic Gly levels. Correspondingly, a large body of data suggests that GlyT1 inhibitors likely confer more comprehensive symptom alleviation than current antipsychotics. To date, a number of small-molecule GlyT1 inhibitors have been reported by the pharmaceutical industry. Developments in the discovery and characterization of GlyT1 inhibitors are discussed in this review.
Resumo:
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Resumo:
The proteasome is a multicatalytic enzyme complex responsible for the regulated degradation of intracellular proteins. In recent years, inhibition of proteasome function has emerged as a novel anti-cancer therapy. Proteasome inhibition is now established as an effective treatment for relapsed and refractory multiple myeloma and offers great promise for the treatment of other haematological malignancies, when used in combination with conventional therapeutic agents. Bortezomib is the first proteasome inhibitor to be used clinically and a second generation of proteasome inhibitors with differential pharmacological properties are currently in early clinical trials. This review summarises the development of proteasome inhibitors as therapeutic agents and describes how novel assays for measuring proteasome activity and inhibition may help to further delineate the mechanisms of action of different proteasome inhibitors. This will allow for the optimized use of proteasome inhibitors in combination therapies and provide the opportunity to design more potent and therapeutically efficacious proteasome inhibitors.
Resumo:
Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.
Resumo:
Background: Glycogen synthase kinase-3 (GSK-8) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3.
Resumo:
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial bio?lm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed “second-generation” antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB,N-mercaptoacetyl-Phe-Tyr-amide (Ki 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in bio?lm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal bio?lms, and to eradicate bio?lm completely when used in combination with conventional antibiotics.
Resumo:
HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DMA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-pi interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DMA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DMA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.
Resumo:
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTP?S), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTP?S, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.
Resumo:
A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a sub-genomic replication system for a series of non-nucleoside boron-containing HCV RNA-Dependent RNA Polymerase (NS5B) inhibitors are described. A summary of the discovery of GSK5852 (3), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.
Resumo:
Purpose: Inhibitors of intestinal alpha-glucosidases are used therapeutically to treat type 2 diabetes mellitus. Bacteria such as Actinoplanes sp. naturally produce potent alpha-glucosidase inhibitor compounds, including the most widely available drug acarbose. It is not known whether lactic acid bacteria (LAB) colonising the human gut possess inhibitory potential against glucosidases. Hence, the study was undertaken to screen LABs having inherent alpha- and beta-glucosidase inhibitory potential. Methods: This study isolated, screened, identified and extracted Lactobacillus strains (Lb1–15) from human infant faecal samples determining their inhibitory activity against intestinal maltase, sucrase, lactase and amylase. Lactobacillus reference strains (Ref1–7), a Gram positive control (Ctrl1) and two Gram negative controls (Ctrl2–3), were also analysed to compare activity. Results: Faecal isolates were identified by DNA sequencing, with the majority identified as unique strains of Lactobacillus plantarum. Some strains (L. plantarum, L. fermentum, L. casei and L. rhamnosus) had potent and broad spectrum inhibitory activities (up to 89 %; p < 0.001; 500 mg/ml wet weight) comparable to acarbose (up to 88 %; p < 0.001; 30 mg/ml). Inhibitory activity was concentration-dependent and was freely available in the supernatant, and was not present in other bacterial genera (Bifidobacterium bifidum and Escherichia coli or Salmonella typhimurium). Interestingly, the potency and spectrum of inhibitory activity across strains of a single species (L. plantarum) differed substantially. Some Lactobacillus extracts had broader spectrum activities than acarbose, effectively inhibiting beta-glucosidase activity (lactase) as well as alpha-glucosidase activities (maltase, sucrase and amylase). Anti-diabetic potential was indicated by the fact that oral gavage with a L. rhamnosus extract (1 g/kg) was able to reduce glucose excursions (Area under curve; 22 %; p < 0.05) in rats during a carbohydrate challenge (starch; 2 g/kg). Conclusion: These results definitively demonstrate that Lactobacillus strains present in the human gut have alpha- and beta-glucosidase inhibitory activities and can reduce blood glucose responses in vivo. Although the potential use of LAB such as Lactobacillus as a dietary supplement, medicinal food or biotherapeutic for diabetes is uncertain, such an approach might offer advantages over drug therapies in terms of broader spectrum activities and fewer unpleasant side effects. Further characterisation of this bioactivity is warranted, and chronic studies should be undertaken in appropriate animal models or diabetic subjects.
Resumo:
This Letter describes the development and SAR of a novel series of GlyT1 inhibitors derived from a scaffold hopping approach that provided a robust intellectual property position, in lieu of a traditional, expensive HTS campaign. Members within this new [3.1.0]-based series displayed excellent GlyT1 potency, selectivity, free fraction, CNS penetration and efficacy in a preclin. model of schizophrenia (prepulse inhibition).
Resumo:
The tyrosine kinase inhibitor (TKI) imatinib has transformed the treatment and outlook of chronic myeloid leukemia (CML); however, the development of drug resistance and the persistence of TKI-resistant stem cells remain obstacles to eradicating the disease. Inhibition of proteasome activity with bortezomib has been shown to effectively induce apoptosis in TKI-resistant cells. In this study, we show that exposure to the next generation proteasome inhibitor carfilzomib is associated with a decrease in ERK signaling and increased expression of Abelson interactor proteins 1 and 2 (ABI-1/2). We also investigate the effect of carfilzomib in models of imatinib-sensitive and -resistant CML and demonstrate a potent reduction in proliferation and induction of apoptosis in a variety of models of imatinib-resistant CML, including primitive CML stem cells. Carfilzomib acts synergistically with the TKIs imatinib and nilotinib, even in imatinib-resistant cell lines. In addition, we found that the presence of immunoproteasome subunits is associated with an increased sensitivity to carfilzomib. The present findings provide a rational basis to examine the potential of carfilzomib in combination with TKIs as a potential therapy for CML, particularly in imatinib-resistant disease.
Resumo:
Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.