61 resultados para Portland


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of carbonation in mortars and methods of measuring the degree of carbonation and pH change is presented. The mortars were manufactured using ordinary portland cement, pulverized fuel ash, ground granulated blast-furnace slag, metakaolin, and microsilica. The mortars were exposed to a carbon dioxide-rich environment 5% CO2 to accelerate carbonation. The resulting carbonation was measured using phenolphthalein indicator and thermogravimetric analysis. The pH of the pore fluid and a powdered sample, extracted from the mortar, was measured to give an accurate indication of the actual pH of the concrete. The pH of the extracted powder mortar sample was found to be similar to the pH of the pore fluid expressed from the mortars. The thermogravimetric analysis suggested two distinct regions of transport of CO2 within mortar, a surface region where convection was prevalent and a deeper region where diffusion was dominant. The use of microsilica has been shown to decrease the rate of carbonation, while pulverized fuel ash and ground granulated blast-furnace slag have a detrimental effect on carbonation. Metakaolin has little effect on carbonation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsolâ¢, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation carried out to evaluate the influence of Bauxsol, an artificially neutralised bauxite refinery residue (NBRR), on various properties of cement pastes. It was found that the NBRR does not have any pozzolanic properties and hence cannot be used as a supplementary cementitious material in concrete. In order to evaluate the effect of adding the product to Portland cement (PC) pastes, fresh properties (i.e. standard consistency and slump), setting time and heat of hydration were measured. In addition, its influence on chemical changes and compressive strength was investigated. It was found that the addition of this NBRR resulted in a decrease in compressive strength beyond 7 days. The setting time decreased with an increase in NBRR content in PC pastes. The rate of heat evolution for NBRR pastes was greater than that of the PC pastes, but a corresponding increase in the quantity of calcium hydroxide was not found. Therefore, it was concluded that unidentified hydration products when Bauxsol was used in PC pastes might have been the reason for the decrease in setting times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<p>The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">2</sub>SO<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">4</sub>) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">2</sub>SO<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">4</sub> activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">2</sub>SO<sub style="border: 0px; font-size: 0.75em; margin: 0px; padding: 0px; line-height: 0; color: rgb(46, 46, 46); font-family: 'Arial Unicode MS', 'Arial Unicode', Arial, 'URW Gothic L', Helvetica, Tahoma, sans-serif; text-align: justify; word-spacing: -1px; background-color: rgb(255, 255, 255);">4 </sub>concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.</p>