38 resultados para Polymer Thermogravimetric Analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study described the drug release, rheological (dynamic and flow) and textural/mechanical properties of a series of formulations composed of 15% w/w polymethylvinylether-co-maleic anhydride (PMVE-MA), 0-9% w/w polyvinylpyrrolidone (PVP) and containing 1-5% w/w tetracycline hydrochloride, designed for the treatment of periodontal disease. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing the concentration of PVP sequentially increased the zero-rate viscosity (derived from the Cross model) and the hardness and compressibility of the formulations (derived from texture profile analysis). These affects may be accredited to increased polymer entanglement and, in light of the observed synergy between the two polymers with respect to their textural and rheological properties, interaction between PVP and PMVE-MA. Increasing the concentration of PVP increased the storage and loss moduli yet decreased the loss tangent of all formulations, indicative of increased elastic behaviour. Synergy between the two polymers with respect to their viscoelastic properties was observed. Increased adhesiveness, associated with increased concentrations of PVP was ascribed to the increasing bioadhesion and tack of the formulations. The effect of increasing drug concentration on the rheological and textural properties was dependent on PVP concentration. At lower concentrations (0, 3% w/w) no effect was observed whereas, in the presence of 9% w/w PVP, increasing drug concentration increased formulation elasticity, zero rate viscosity, hardness and compressibility. These observations were ascribed to the greater mass of suspended drug in formulations containing the highest concentration of PVP. Drug release from formulations containing 6 and 9% PVP (and 5% w/w drug) was prolonged and swelling/diffusion controlled. Based on the drug release, rheological and textural properties, it is suggested that the formulation containing 15% w/w PMVE-MA, 6% w/w PVP and tetracycline hydrochloride (5% w/w) may be useful for the treatment of periodontal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the complexity and inherent instability in polymer extrusion there is a need for process models which can be run on-line to optimise settings and control disturbances. First-principle models demand computationally intensive solution, while ‘black box’ models lack generalisation ability and physical process insight. This work examines a novel ‘grey box’ modelling technique which incorporates both prior physical knowledge and empirical data in generating intuitive models of the process. The models can be related to the underlying physical mechanisms in the extruder and have been shown to capture unpredictable effects of the operating conditions on process instability. Furthermore, model parameters can be related to material properties available from laboratory analysis and as such, lend themselves to re-tuning for different materials without extensive remodelling work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermogravimetry (TG) can be used for assessing the compositional differences in grasses that relate to dry matter digestibility (DMD) determined by pepsin-cellulase assay. This investigation developed regression models for predicting DMD of herbage grass during one growing season using TG results. The calibration samples were obtained from a field trial of eight cultivars and two breeding lines. The harvested materials from five cuts were analysed by TG to identify differences in the combustion patterns within the range of 30-600 degrees C. The discrete results including weight loss, peak height, area, temperature, widths and residue of three decomposition peaks were regressed against the measured DMD values of the calibration samples. Similarly, continuous weight loss results of the same samples were also utilised to generate DMD models. The r(2) for validation of the discrete and the best continuous models were 0.90 and 0.95, respectively, and the two calibrations were validated using independent samples from 24 plots from a trial carried out in 2004. The standard error for prediction of the 24 samples by the discrete model (4.14%) was higher than that by the continuous model (2.98%). This study has shown that DMD of grass could be predicted from the TG results. The benefit of thermal analysis is the ability to detect and show changes in composition of cell wall fractions of grasses during different cuts in a year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer extrusion is one of the major methods of processing polymer materials and advanced process monitoring is important to ensure good product quality. However, commonly used process monitoring devices, e.g. temperature and pressure sensors, are limited in providing information on process dynamics inside an extruder barrel. Screw load torque dynamics, which may occur due to changes in solids conveying, melting, mixing, melt conveying, etc., are believed to be a useful indicator of process fluctuations inside the extruder barrel. However, practical measurement of the screw load torque is difficult to achieve. In this work, inferential monitoring of the screw load torque signal in an extruder was shown to be possible by monitoring the motor current (armature and/or field) and simulation studies were used to check the accuracy of the proposed method. The ability of this signal to aid identification and diagnosis of process issues was explored through an experimental investigation. Power spectral density and wavelet frequency analysis were implemented together with a covariance analysis. It was shown that the torque signal is dominated by the solid friction in the extruder and hence it did not correlate well with melting fluctuations. However, it is useful for online identification of solids conveying issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this paper takes advantage of newly developed instrumentation suitable for in process monitoring of an industrial stretch blow molding machine. The instrumentation provides blowing pressure and stretch rod force histories along with the kinematics of polymer contact with the mould wall. A Design of Experiments pattern was used to qualitatively relate machine inputs with these process parameters and the thickness distribution of stretch blow molded PET (polyethylene terephtalate) bottles. Material slippage at the mold wall and thickness distribution is also discussed in relation to machine inputs. The key process indicators defined have great potential for use in a closed loop process control system and for validation of process simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the physicochemical and drug diffusion properties of rifampicin containing poly(epsilon-caprolactone) (PCL)/polyethylene glycol (PEG) networks, designed as bioactive biomaterials. Uniquely, the effects of the states of both rifampicin and PEG and the interplay between these components on these properties are described. PCL matrices containing rifampicin (1-5%, w/w) and PEG 200 (0-15%, w/w) were prepared by casting from an organic solvent (dichloromethane). The films were subsequently characterized in terms of their thermal/thermorheological, surface and tensile properties, biodegradation and drug diffusion/release properties. Incorporation of PEG and/or rifampicin significantly affected the tensile and surface properties of PCL, lowering the ultimate tensile strength, % elongation at break, Young modulus and storage and loss moduli. Both in the absence and presence of PEG, solubilisation of rifampicin within the crystalline domains of PCL was observed. PEG was present as a dispersed liquid phase. The release of rifampicin (3% loading) was unaffected by the presence of PEG. Similarly the release of rifampicin (5%) was unaffected by low concentrations of PEG (5-10%) however, at higher loadings, the release rate of rifampicin was enhanced by the presence of PEG. Rifampicin release (10% loading) was enhanced by the presence of PEG in a concentration dependent fashion. These observations were accredited to enhanced porosity of the matrix. In all cases, diffusion-controlled release of rifampicin occurred which was unaffected by polymer degradation. This study has uniquely illustrated the effect of hydrophilic pore formers on the physicochemical properties of PCL. Interestingly, enhanced diffusion controlled release was only observed from biomaterials containing high loadings of PEG and rifampicin (5, 10%), concentrations that were shown to affect the mechanical properties of the biomaterials. Care should therefore be shown when adopting this strategy to enhance release of bioactive agents from biomaterials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic mechanical analysis (DMA) is an analytical technique in which an oscillating stress is applied to a sample and the resultant strain measured as functions of both oscillatory frequency and temperature. From this, a comprehensive knowledge of the relationships between the various viscoelastic parameters, e.g. storage and loss moduli, mechanical damping parameter (tan delta), dynamic viscosity, and temperature may be obtained. An introduction to the theory of DMA and pharmaceutical and biomedical examples of the use of this technique are presented in this concise review. In particular, examples are described in which DMA has been employed to quantify the storage and loss moduli of polymers, polymer damping properties, glass transition temperature(s), rate and extent of curing of polymer systems, polymer-polymer compatibility and identification of sol-gel transitions. Furthermore, future applications of the technique for the optimisation of the formulation of pharmaceutical and biomedical systems are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.