33 resultados para Poets, Japanese.
Resumo:
Rice has been demonstrated to be one of the major contributors to inorganic arsenic (i-As) intake in humans. However, little is known about rice products as additional source of i-As exposure. In this study, misos, syrups and amazake (a fermented sweet rice drink) produced from rice, barley and millet were analysed for total arsenic (t-As) and a subset of samples were also analyzed for As speciation. Rice based products displayed a higher i-As content than those derived from barley and millet. Most of the t-As in the rice products studied was inorganic (63-83%), the remainder being dimethylarsinic acid. Those who regularly consume rice drinks and condiments, such as the Japanese population and those who follow health conscious diets based on the Japanese cuisine, could reach up to 23% of the World Health Organization's Provisional Tolerable Daily Intake of i-As, by only consuming these kinds of products. This study provides a wide appreciation of how i-As derived from rice based products enters the human diet and how this may be of concern to populations who are already exposed to high levels of i-As through consumption of foods such as rice and seaweed.
Resumo:
Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
No abstract available