40 resultados para Phytophagous insects.
Resumo:
Flowers of the orchid genus Ophrys resemble female insects, and thereby sexually deceive, attract and are pollinated by male insects. Floral bouquet is thought to play a major role in this sexual mimicry, although the search for functional odour components has been something of a chemical ecologist's Holy Grail. Two new papers unravel the exquisite intricacy of the chemical deception by the orchid.
Resumo:
Insects of the order Hymenoptera are biologically and economically important members of natural and agro ecosystems and exhibit diverse biologies, mating systems, and sex pheromones. We review what is known of their sex pheromone chemistry and function, paying particular emphasis to the Hymenoptera Aculeata (primarily ants, bees, and sphecid and vespid wasps), and provide a framework for the functional classification of their sex pheromones. Sex pheromones often comprise multicomponent blends derived from numerous exocrine tissues, including the cuticle. However, very few sex pheromones have been definitively characterized using bioassays, in part because of the behavioral sophistication of many Aculeata. The relative importance of species isolation versus sexual selection in shaping sex pheromone evolution is still unclear. Many species appear to discriminate among mates at the level of individual or kin/colony, and they use antiaphrodisiacs. Some orchids use hymenopteran sex pheromones to dupe males into performing pseudocopulation, with extreme species specificity.
Resumo:
The reconstruction and structure of the European Holocene “wildwood” has been the focus of considerable academic debate. The ability of palaeoecological data and particularly pollen analysis to accurately reflect the density of wildwood canopy has also been widely discussed. Fossil insects, as a proxy for vegetation and landscape structure, provide a potential approach to address this argument. Here, we present a review and re-analysis of 36 early and mid-Holocene (9500-2000 cal BC) sub-fossil beetle assemblages from Britain, examining percentage values of tree, open ground and dung beetles as well as tree host data to gain an insight into vegetation structure, the role of grazing animals in driving such structure and establish independently the importance of different types of trees and associated shading in the early Holocene “wildwood”. Open indicator beetle species are persistently present over the entire review period, although they fluctuate in importance. During the early Holocene (9500-6000 cal BC), these indicators are initially high, at levels which are not dissimilar to modern data from pasture woodland. However, during the latter stages of this and the next period, 6000-4000 cal BC, open ground and pasture indicators decline and are generally low compared with previously. Alongside this pattern, we see woodland indicators generally increase in importance, although there are significant local fluctuations. Levels of dung beetles are mostly low over these periods, with some exceptions to this pattern, especially towards the end of the Mesolithic and in floodplain areas. Host data associated with the fossil beetles indicate that trees associated with lighter canopy conditions such as oak, pine, hazel and birch are indeed important components of the tree canopy during the earlier Holocene (c. 9500-6000 cal BC), in accordance with much of the current pollen literature. Beetles associated with more shade-tolerant trees (such as lime and elm) become more frequent in the middle Holocene (6000-4000 cal BC) suggesting that at this stage the woodland canopy was less open than previously, although open ground and pasture areas appear to have persisted in some locations. The onset of agriculture (4000-2000 cal BC) coincides with significant fluctuations in woodland composition and taxa. This is presumably as a result of human impact, although here there are significant regional variations. There are also increases in the amounts of open ground represented and especially in the levels of dung beetles present in faunas, suggesting there is a direct relationship between the activities of grazing animals and the development of more open areas. One of the most striking aspects of this review is the variable nature of the landscape suggested by the palaeoecological data, particularly but not exclusively with the onset of agriculture: some earlier sites indicate high variability between levels of tree-associated species on the one hand and the open ground beetle fauna on the other, indicating that in some locations, open areas were of local significance and can be regarded as important features of the Holocene landscape. The role of grazing animals in creating these areas of openness was apparently minimal until the onset of the Neolithic.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Amphibian skin secretions are rich sources of cationic amphipathic peptides which often possess potent and broad-spectrum antimicrobial activity. However, the venoms of other animals such as hymenopteran insects, also contain peptides with these characteristics and the literature is unclear as to their antimicrobial potential. Here we subjected the venom of the European hornet, Vespa crabro, to reverse phase HPLC fractionation followed by screening of aliquots of individual fractions in bacterial zonal inhibition assays. Two major peptides possessing activity in these assays were further purified by HPLC and subjected to MALDI-TOF MS analysis and MS/MS fragmentation using an ESI mass spectrometer. The peptides were identified as mastoparan C (LNLKALLAVAKKILamide) and crabrolin (FLPLILRKIVTALamide). Replicates of both peptides were synthesised by solid-phase methodology and mean inhibitory concentrations (MICs) established against Staphylococcus aureus and Escherichia coli. Mastoparan C was found to be a potent antimicrobial with MIC values of 2 µM and 4 µM against S. aureus and E. coli, respectively. Crabrolin was found to be less potent with MIC values of > 160 µM and 40 µM for S. aureus and E. coli. Hornet venom thus contains a potent antimicrobial peptide that has been unambiguously identified as mastoparan C, a peptide that is known to affect profound histamine release from mast cells and to generally activate membrane G protein-linked receptors. It is thus highly probable that its antimicrobial effects, like those previously documented, are a result of a generalized membrane interactive and disruptive function — perhaps reflective of the authentic role of amphibian skin antimicrobials.
Resumo:
Phenoloxidase (PO) is believed to be a key mediator of immune function in insects and has been implicated both in non-self recognition and in resistance to a variety of parasites and pathogens, including baculoviruses and parasitoids. Using larvae of the Egyptian cotton leafworm, Spodoptera littoralis, we found that despite its apparent importance, haemolymph PO activity varied markedly between individuals, even amongst insects reared under apparently identical conditions. Sib-analysis methods were used to determine whether individuals varied genetically in their PO activity, and hence in one aspect of immune function. The heritability estimate of haemolymph PO activity was high (h 2 = 0.690 +/- 0.069), and PO activity in the haemolymph was strongly correlated with PO activity in both the cuticle and midgut; the sites of entry for most parasites and pathogens. Haemolymph PO activity was also strongly correlated with the degree to which a synthetic parasite (a small piece of nylon monofilament) was encapsulated and melanized (r = 0.622 +/- 0.142), suggesting that the encapsulation response is also heritable. The mechanism maintaining this genetic variation has yet to be elucidated.
Resumo:
1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.
Resumo:
Globally there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus FST was up to 0.53, and G’ST and Dest were even higher (maximum: 0.85 and 1.00 respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. Colletes floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees.
Resumo:
The nervous systems of helminths are predominantly peptidergic in nature, although it is likely that the full range of regulatory peptides used by these organisms has yet to be elucidated. Attempts to identify novel helminth neuropeptides are being made using immunocytochemistry with antisera raised against peptides isolated originally from insects. One of these antisera was raised against allatostatin III, a peptide isolated originally from the cockroach, Diploptera punctata, and a member of a family of related peptides found in insects. Allatostatin immunoreactivity was found throughout the nervous systems of Mesocestoides corti tetrathyridia, and adult Moniezia expansa, Diclidophora merlangi, Fasciola hepatica, Schistosoma mansoni, Ascaris suum and Panagrellus redivivus. Immunostaining was observed in the nerve cords and anterior ganglia of all the helminths. It was also apparent in the subtegumental nerves and around the reproductive apparatus of the flatworms, in neurones in the pharynx of D. merlangi, F. hepatica, A. suum and P. redivivus, and in fibres innervating the anterior sense organs in the nematodes. Immunostaining in all species was both reproducible and specific in that it could be abolished by pre-absorption of the antiserum with allatostatins I-IV. These results suggest that molecules related to the D. punctata allatostatins are important components in the nervous systems of a number of helminth parasites, and a free-living nematode. Their distribution within the nervous system suggests they function as neurotransmitters/ neuromodulators with roles in locomotion, feeding, reproduction and sensory perception.
Resumo:
The allatostatins are a family of peptides isolated originally from the cockroach, Diploptera punctata. Related peptides have been identified in Periplaneta americana and the blowfly, Calliphora vomitoria. These peptides have been shown to be potent inhibitors of juvenile hormone synthesis in these species. A peptide inhibitor of juvenile hormone biosynthesis has also been isolated from the moth, Manduca sexta; however, this peptide has no structural homology with the D. punctata-type allatostatins. Investigations of the phylogeny of the D. punctata allatostatin peptide family have been started by examining a number of nonarthropod invertebrates for the presence of allatostatin-like molecules using immunocytochemistry with antisera directed against the conserved C-terminal region of this family. Allatostatin-like immunoreactivity (ALIR) was demonstrated in the nervous systems of Hydra oligactis (Hydrozoa), Moniezia expansa (Cestoda), Schistosoma mansoni (Trematoda), Artioposthia triangulata (Turbellaria), Ascaris suum (Nematoda), Lumbricus terrestris (Oligochaeta), Limax pseudoflavus (Gastropoda), and Eledone cirrhosa (Cephalopoda). ALIR could not be demonstrated in Ciona intestinalis (Ascidiacea). These results suggest that molecules related to the allatostatins may play an important role in nervous system function in many invertebrates as well as in insects and that they also have an ancient evolutionary lineage. (C) 1994 Wiley-Liss, Inc.
Resumo:
FMRFamide was isolated originally from neural-tissue extracts of a bivalve mollusc, since when either authentic FMRFamide or a series of structurally-related peptides have been isolated from representative arthropods, annelids and many additional molluscs. However, to date no information exists as to the definitive presence and primary structure of a FaRP in a free-living flatworm. Here, we report the isolation and primary structure of a FaRP from the free-living turbellarian, Artioposthia triangulata, a species from which NPF has been previously structurally-characterised. Unlike molluscs and insects, in which several FaRP a are expressed, only a single member of this family was detected in this turbellarian. The primary structure of this turbellarian FaRP was established as Arg-Tyr-Ile-Arg-Phe-NH2 (RYIRFamide) and the molecular mass as 752.7 Da. These data have established unequivocally that FaRPs occur in the nervous systems of the most phylogenetically-ancient invertebrates which display bilaterally-symmetrical neuronal plans and that authentic FMRFamide is probably not the original member of the family in molecular evolutionary terms.
Resumo:
Using the foraging movements of an insectivorous bat, Myotis mystacinus, we describe temporal switching of foraging behaviour in response to resource availability. These observations conform to predictions of optimized search under the Lévy flight paradigm. However, we suggest that this occurs as a result of a preference behaviour and knowledge of resource distribution. Preferential behaviour and knowledge of a familiar area generate distinct movement patterns as resource availability changes on short temporal scales. The behavioural response of predators to changes in prey fields can elicit different functional responses, which are considered to be central in the development of stable predator-prey communities. Recognizing how the foraging movements of an animal relate to environmental conditions also elucidates the evolution of optimized search and the prevalence of discrete strategies in natural systems. Applying techniques that use changes in the frequency distribution of movements facilitates exploration of the processes that underpin behavioural changes. © 2012 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.
Resumo:
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.