19 resultados para Physical Adsorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption and electrooxidation of CO at a Ru(0001) electrode in perchloric acid solution have been investigated as a function of temperature, potential and time using in situ FTIR spectroscopy. This builds upon and extends previous work on the same system carried out at room temperature. As was observed at room temperature, both linear (CO) and 3-fold-hollow (CO) binding CO adsorbates (bands at 2000-2045 cm and 1768-1805 cm, respectively) were detected on the Ru(0001) electrode at 10°C and 50°C. However, the temperature of the Ru(0001) electrode had a significant effect upon the structure and behavior of the CO adlayer. At 10°C, the in-situ FTIR data showed that the adsorbed CO species still remain in rather compact islands up to ca. 1100 mV vs Ag/AgCl as the CO oxidation reaction proceeds, with oxidation occurring only at the boundaries between the CO and active surface oxide/hydroxide domains. However, the IR data collected at 50°C strongly suggest that the adsorbed CO species are present as relatively looser and weaker structures, which are more easily electro-oxidized. The temperature-, potential-, and coverage-dependent relaxation and compression of the CO adlayer at low coverages are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasingly popular disrupted Langmuir–adsorption (DLA) kinetic model of photocatalysis does not contain an explicit function for the dependence of rate on the irradiance, ρ, but instead has a term αρθ, where, α is a constant of the system, and θ is also a constant equal to 1 or 0.5 at low or high ρ values, respectively. Several groups have recently replaced the latter term with an explicit function of the form χ1(−1 + (1 + χ2ρ)1/2), where χ1 and χ2, are constants that can be related to a proposed reaction scheme. Here the latter schemes are investigated, and revised to create a more credible form by assuming an additional hole trapping step. The latter may be the oxidation of water or a surface saturated with O2–. Importantly, this revision suggests that it is only applicable for low quantum yield/efficiency processes. The revised disrupted Langmuir–adsorption model is used to provide good fits to the kinetic data reported for a number of different systems including the photocatalytic oxidation of nitric oxide (NO), phenol (PhOH), and formic acid (FA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of water and deuterium oxide on TiO2 surfaces was investigated in the dark as well as under UV(A) irradiation using in situ ATR-FTIR spectroscopy under oxygen and oxygen free conditions. Adsorption of H2O-D2O mixtures revealed an isotopic exchange reaction occurring onto the surface of TiO2 in the dark. Under UV(A) irradiation, the amount of both OH and OD groups was found to be increased by the presence of molecular oxygen. Furthermore, the photocatalytic formation of hydroperoxide under oxygenated condition has been recorded utilizing Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) spectroscopy which appeared as new band at 3483 cm-1. Different possible mechanisms are discussed in terms of the source of hydroxyl groups formed and/or hydration water on the TiO2 surface for the photocatalytic reaction and photoinduced hydrophilicity.