27 resultados para Pezzani, André


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes. DESIGN: Sibling correlation study and genome-wide association study (GWAS). PARTICIPANTS: For the sibling correlation study, 209 sibling pairs with advanced AMD were included. For the GWAS, 2594 participants with advanced AMD subtypes and 4134 controls were included. Replication cohorts included 5383 advanced AMD participants and 15 240 controls. METHODS: Participants had the AMD grade assigned based on fundus photography, examination, or both. To determine heritability of advanced AMD subtypes, a sibling correlation study was performed. For the GWAS, genome-wide genotyping was conducted and 6 036 699 single nucleotide polymorphisms (SNPs) were imputed. Then, the SNPs were analyzed with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. MAIN OUTCOME MEASURES: Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. RESULTS: The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P = 4.2×10(-5)), meaning that in siblings of probands with CNV or GA, the same advanced subtype is more likely to develop. In the analysis comparing participants with CNV to those with GA, a statistically significant association was observed at the ARMS2/HTRA1 locus (rs10490924; odds ratio [OR], 1.47; P = 4.3×10(-9)), which was confirmed in the replication samples (OR, 1.38; P = 7.4×10(-14) for combined discovery and replication analysis). CONCLUSIONS: Whether CNV versus GA develops in a patient with AMD is determined in part by genetic variation. In this large GWAS meta-analysis and replication analysis, the ARMS2/HTRA1 locus confers increased risk for both advanced AMD subtypes, but imparts greater risk for CNV than for GA. This locus explains a small proportion of the excess sibling correlation for advanced AMD subtype. Other loci were detected with suggestive associations that differ for advanced AMD subtypes and deserve follow-up in additional studies. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fields in multiple-pass interferometers, such as the Fabry-Pérot cavity, exhibit great sensitivity not only to the presence but also to the motion of any scattering object within the optical path. We consider the general case of an interferometer comprising an arbitrary configuration of generic beam splitters and calculate the velocity-dependent radiation field and the light force exerted on a moving scatterer. We find that a simple configuration, in which the scatterer interacts with an optical resonator from which it is spatially separated, can enhance the optomechanical friction by several orders of magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooling of the mechanical motion of a GaAs nano-membrane using the photothermal effect mediated by excitons was recently demonstrated by some of the authors (Usami et al 2012 Nature Phys. 8 168) and provides a clear example of the use of thermal forces to cool down mechanical motion. Here, we report on a single-free-parameter theoretical model to explain the results of this experiment which matches the experimental data remarkably well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently [A. Xuereb, et al., Phys. Rev. Lett. 105, 013602 (2010)], we calculated the radiation field and the optical forces acting on a moving object inside a general one-dimensional configuration of immobile optical elements. In this article we analyse the forces acting on a semi-transparent mirror in the 'membrane-in-the-middle' configuration and compare the results obtained from solving scattering model to those from the coupled cavities model that is often used in cavity optomechanical system. We highlight the departure of this model from the more exact scattering theory when the reflectivity of the moving element drops below about 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a one-dimensional scattering theory which enables us to describe a wealth of effects arising from the coupling of the motional degree of freedom of scatterers to the electromagnetic field. Multiple scattering to all orders is taken into account. The theory is applied to describe the scheme of a Fabry-Perot resonator with one of its mirrors moving. The friction force, as well as the diffusion, acting on the moving mirror is derived. In the limit of a small reflection coefficient, the same model provides for the description of the mechanical effect of light on an atom moving in front of a mirror.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the nature of the three-mode interaction inside an optomechanically active microtoroid with a sizable ?(2) coefficient. Experimental techniques are quickly advancing to the point where structures with the necessary properties can be made, and we argue that these provide a natural setting in which to observe rich dynamics leading, for instance, to genuine tripartite steady-state entanglement. We also show that this approach lends itself to a full characterization of the three-mode state of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the efficiencies of two optical cooling schemes, where a single particle is either inside or outside an optical cavity, under experimentally-realisable conditions. We evaluate the cooling forces using the general solution of a transfer matrix method for a moving scatterer inside a general one-dimensional system composed of immobile optical elements. Assuming the same atomic saturation parameter, we find that the two cooling schemes provide cooling forces and equilibrium temperatures of comparable magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach. Finally, semiclassical Monte-Carlo simulations are performed to validate the analytic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a generic transfer matrix approach for the description of the interaction of atoms possessing multiple ground state and excited state sublevels with light fields. This model allows us to treat multi-level atoms as classical scatterers in light fields modified by, in principle, arbitrarily complex optical components such as mirrors, resonators, dispersive or dichroic elements, or filters. We verify our formalism for two prototypical sub-Doppler cooling mechanisms and show that it agrees with the standard literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate optomechanical forces on a nearly lossless scatterer, such as an atom pumped far off-resonance or amicromirror, inside an optical ring cavity. Our model introduces two additional features to the cavity: an isolator is used to prevent circulation and resonant enhancement of the pump laser field and thus to avoid saturation of or damage to the scatterer, and an optical amplifier is used to enhance the effective Q-factor of the counterpropagating mode and thus to increase the velocity-dependent forces by amplifying the back-scattered light. We calculate friction forces, momentum diffusion, and steady-state temperatures to demonstrate the advantages of the proposed setup.