20 resultados para Person Centered Approach
Resumo:
Going beyond the association between youth exposure to political violence and psychopathology, the current article examines within-person change in youth strength of identity with their ethno-political group and youth reports of the insecurity in their communities. Conceptually related but growing out of different paradigms, both group identity and emotional insecurity have been examined as key variables impacting youth responses to threats from other group members. The goal of the current study is to review previous studies examining these two key variables and to contribute new analyses, modeling within-person change in both variables and examining covariation in their growth. The current article uses data from 823 Belfast adolescents over 4 years. The results suggest youth are changing linearly over age in both constructs and that there are ethno-political group differences in how youth are changing. The results also indicate that change in insecurity is related to strength of identity at age 18, and strength of identity and emotional insecurity are related at age 18. Implications and directions for future work in the area of youth and political violence are discussed. © 2014 American Psychological Association.
Resumo:
A parametric regression model for right-censored data with a log-linear median regression function and a transformation in both response and regression parts, named parametric Transform-Both-Sides (TBS) model, is presented. The TBS model has a parameter that handles data asymmetry while allowing various different distributions for the error, as long as they are unimodal symmetric distributions centered at zero. The discussion is focused on the estimation procedure with five important error distributions (normal, double-exponential, Student's t, Cauchy and logistic) and presents properties, associated functions (that is, survival and hazard functions) and estimation methods based on maximum likelihood and on the Bayesian paradigm. These procedures are implemented in TBSSurvival, an open-source fully documented R package. The use of the package is illustrated and the performance of the model is analyzed using both simulated and real data sets.
Resumo:
In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.
https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.