28 resultados para Pd-C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

XPS, HREELS, ARUPS and Delta phi data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant a interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: similar to 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and H-a followed by desorption rate limited loss of H-2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H-2 and C-a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetylene coupling to benzene on the Pd(lll) surface is greatly enhanced by the presence of catalytically inert Au atoms. LEED and Auger spectroscopy show that progressive annealing of Au overlayers on Pd(lll) leads to the formation of a series of random surface alloys with continuously varying composition. Cyclization activity is a strong function of surface composition-the most efficient catalyst corresponds to a surface of composition similar to 85% Pd. CO TPD and HREELS data show that acetylene cyclization activity is not correlated with the availability of singleton Pd atoms, nor just with the presence of 3-fold pure Pd sites-the preferred chemisorption site for C2H2 on Pd{111}. The data can be quantitatively rationalized in terms of a simple model in which catalytic activity is dominated by Pd6Au and Pd-7 surface ensembles, allowance being made for the known degree to which pure Pd{111} decomposes the reactant and product molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetrahexahedral Pd nanocrystals (THH Pd NCs) were prepared on a glassy carbon electrode using a programmed square-wave potential electrodeposition method, and modified by Bi adatoms with a range of coverages via the cyclic voltammetry method. The reactivity of the catalysts prepared towards ethanol electrooxidation reaction (EOR) was studied in alkaline medium at various temperatures and under other conditions that practical fuel cells operate. Significant activity enhancements were observed for the Bi-modified THH Pd NCs with an optimum Bi coverage (θBi) of around 0.68 being obtained. Furthermore, it was found that increasing temperature from 25 ºC to 60 ºC enhances the reactivity significantly. The general kinetics data of EOR on Bi-decorated and bare THH Pd NCs have also been obtained, from the activation energy calculated based on Arrhenius plots, and compared. At the optimum Bi coverage, an enhancement in the activity of almost 3 times was achieved, and the corresponding activation energy was found to be reduced significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunotherapy is a promising strategy for the treatment of various types of cancer. An antibody that targets programmed death ligand-1 (PD-L1) pathway has been shown to be active towards various types of cancer, including melanoma and lung cancer. MPDL3280A, an anti‑PD-L1 antibody, has shown clear clinical activity in PD-L1-overexpressing bladder cancer with an objective response rate of 40-50%, resulting in a breakthrough therapy designation granted by FDA. These events pronounce the importance of targeting the PD-L1 pathway in the treatment of bladder cancer. In the present study, we investigated the prognostic significance of the expression of three genes in the PD-L1 pathway, including PD-L1, B7.1 and PD-1, in three independent bladder cancer datasets in the Gene Expression Omnibus database. PD-L1, B7.1 and PD-1 were significantly associated with clinicopathological parameters indicative of a more aggressive phenotype of bladder cancer, such as a more advanced stage and a higher tumor grade. In addition, a high level expression of PD-L1 was associated with reduced patient survival. Of note, the combination of PD-L1 and B7.1 expression, but not other combinations of the three genes, were also able to predict patient survival. Our findings support the development of anti-PD-L1, which blocks PD-L1-PD-1 and B7.1-PD-L1 interactions, in treatment of bladder cancer. The observations were consistent in the three independent bladder cancer datasets consisting of a total of 695 human bladder specimens. The datasets were then assessed and it was found that the expression levels of the chemokine CC-motif ligand (CCL), CCL3, CCL8 and CCL18, were correlated with the PD-L1 expression level, while ADAMTS13 was differentially expressed in patients with a different survival status (alive or deceased). Additional investigations are required to elucidate the role of these genes in the PD-L1-mediated immune system suppression and bladder cancer progression. In conclusion, findings of this study suggested that PD-L1 is an important prognostic marker and a therapeutic target for bladder cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.