25 resultados para Parthenogenesis in plants


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: NF-κB-driven inflammation is negatively regulated by the zinc finger protein A20. Gibberellic acid (GA3 ) is a plant-derived diterpenoid with documented anti-inflammatory activity, which is reported to induce A20-like zinc finger proteins in plants. Here, we sought to investigate the anti-inflammatory effect of GA3 in airway epithelial cells and determine if the anti-inflammatory action relates to A20 induction.

EXPERIMENTAL APPROACH: Primary nasal epithelial cells and a human bronchial epithelial cell line (16HBE14o-) were used. Cells were pre-incubated with GA3 , stimulated with Pseudomonas aeruginosa LPS; IL-6 and IL-8 release, A20, NF-κB and IκBα expression were then evaluated. To determine if any observed anti-inflammatory effect occurred via an A20-dependent mechanism, A20 was silenced using siRNA.

KEY RESULTS: Cells pre-incubated with GA3 had significantly increased levels of A20 mRNA (4 h) and protein (24 h), resulting in a significant reduction in IL-6 and IL-8 release. This effect was mediated via reduced IκBα degradation and reduced NF-κB (p65) expression. Furthermore, the anti-inflammatory action of GA3 was abolished in A20-silenced cells.

CONCLUSIONS AND IMPLICATIONS: We showed that A20 induction by GA3 attenuates inflammation in airway epithelial cells, at least in part through its effect on NF-κB and IκBα. GA3 or gibberellin-derived derivatives could potentially be developed into anti-inflammatory drugs for the treatment of chronic inflammatory diseases associated with A20 dysfunction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of proteoid roots under phosphorus deficiency by white lupin (Lupinus albus) may result in increased arsenate uptake, as arsenate is a phosphate analogue. This, together with its high biomass production, rapid growth and ability to survive in soils with low phosphate and nitrogen contents, low pH and high metal contents make them an interesting species to investigate with respect to revegetation, and possibly also for long-term phytoremediation, of arsenic contaminated soils. Kinetic parameters for arsenate uptake for P-deficient and P-sufficient plants, as well as for proteoid and nonproteoid roots were obtained. Down-regulation of arsenate uptake by phosphate, as well as phosphate/arsenate competition for P-deficient and P-sufficient plants was studied. Arsenate uptake was reduced by phosphate, but small differences were found between P-deficient and P-sufficient plants. Arsenate uptake by proteoid roots was higher than for nonproteoid roots of P-deficient plants, with higher Vmax and similar Km values. Down-regulation of the high affinity phosphate/arsenate uptake system by phosphate does take place but seems to be slower than in other plants. This study suggests that the low sensitivity of the phosphate/arsenate uptake system to regulation by phosphate may be related to the adaptations of white lupin to low P available environments. Such adaptation are absent in plants unable to develop proteoid roots.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the current model suggests that this asymmetry is established and maintained through treadmilling of parallel microtubules. However, we have analyzed the behavior of microtubules in the phragmoplast using live-cell imaging coupled with mathematical modeling and dynamic simulations and report that microtubules initiate randomly in the phragmoplast and that the majority exhibit dynamic instability with higher turnover rates nearer to the midzone. The directional transport of vesicles is possible because the majority of the microtubules polymerize toward the midzone. Here, we propose the first inclusive model where microtubule dynamics and phragmoplast asymmetry are consistent with the localization and activity of proteins known to regulate microtubule assembly and disassembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyacetylenes of the falcarinol type such as falcarinol and falcarindiol naturally occur in plants of the Apiaceae family, mainly carrots and parsnips. In extracts of newly harvested carrots and parsnips, their levels vary between 20 and 300 mg/kg fresh weight and depend on agronomic factors, in particular the cultivar type. With increasing evidence of their in vitro bioactivity, the retention of these heat-sensitive compounds is desirable during handling, processing, and storage of carrots and parsnips. Quantification of these compounds is usually performed using reverse-phase chromatography coupled with mass spectrometry or other detection methods after appropriate solvent extraction. During minimal processing most losses occur during peeling of the carrots due to the higher distribution of polyacetylenes in the vegetable skin. Heat processing results in reduction of polyacetylene levels, whereas in the case of non-thermal processing, it is mainly dependent on the method employed. The levels of polyacetylenes are rather stable during short-term storage. There are some general guidelines to ensure higher retention of polyacetylene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genetics of arsenic tolerance in plants has not been extensively studied and no arsenic tolerance gene has been genetically mapped. Screening 20 diverse genotypes of rice for reduced root growth in 13.3 μM arsenate identified marked differences in tolerance. The most sensitive variety, Dawn, is known to be highly susceptible to straighthead, a condition linked to arsenic contamination of soil. Screening 108 recombinant inbred lines of the Bala x Azucena mapping population revealed the presence of a major gene, AsTol, which mapped between markers RZ516 and RG213 on chromosome 6. This gene is a good target for further characterisation. It should prove valuable for investigations into the physiological and molecular mechanism behind arsenic tolerance in plants and may lead to strategies aimed at breeding for arsenic contaminated regions. © New Phytologist (2004).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of arbuscular mycorrhizal fungi (AMF) in arsenate resistance in arbuscular mycorrhizal associations is investigated here for two Glomus spp. isolated from the arsenate-resistant grass Holcus lanatus. Glomus mosseae and Glomus caledonium were isolated from H. lanatus growing on an arsenic-contaminated mine-spoil soil. The arsenate resistance of spores was compared with nonmine isolates using a germination assay. Short-term arsenate influx into roots and long-term plant accumulation of arsenic by plants were also investigated in uninfected arsenate resistant and nonresistant plants and in plants infected with mine and nonmine AMF. Mine AMF isolates were arsenate resistant compared with nonmine isolates. Resistant and nonresistant G. mosseae both suppressed high-affinity arsenate/phosphate transport into the roots of both resistant and nonresistant H. lanatus. Resistant AMF colonization of resistant H. lanatus growing in contaminated mine spoil reduced arsenate uptake by the host. We conclude that AMF have evolved arsenate resistance, and conferred enhanced resistance on H. lanatus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.

METHODOLOGY/PRINCIPAL FINDINGS: Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.

CONCLUSIONS/SIGNIFICANCE: We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.