179 resultados para Parentage Order
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.
Resumo:
The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.
Resumo:
Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.