158 resultados para Palladium catalysts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerogels containing palladium metal nanoparticles were prepared using an ionic liquid route and tested for activity towards hydrogenation and Heck C-C coupling reactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, the hydrogenation/hydrogenolysis of a range of disulfides has been achieved over a supported palladium catalyst using hydrogen under relatively benign conditions. These unexpected results demonstrate that it is possible to avoid the poisoning of the catalyst by either the nitrogen-containing groups or the sulfur species, allowing both efficient reaction and recycling of the catalyst under the proper conditions (e.g., at low temperatures). A slight loss in activity was found on recycling; however, the catalyst activity can be recovered using hydrogen pretreatment. The reaction mechanism for the hydrogenolysis and hydrogenation of ortho-, meta-, and para-dinitrodiphenyldisulfide to the corresponding aminothiophenol has been elucidated. Density functional theory calculations were used to investigate the adsorption mode of the dinitrodiphenyldisulfides; a clear dependence on adsorption geometry was found regarding whether the molecule is cleaved at the S-S bond before the reduction of the nitro group or vice versa. This study demonstrates the versatility of these catalysts for the hydrogenation/hydrogenolysis of sulfur-containing molecules, which normally are considered poisons, and will extend their use to a new family of substrates. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure, thermal stability, and catalytic behavior of a novel highly dispersed silica-supported Pd/Sn catalyst prepared by an organometallic route have been examined by X-ray photoelectron, X-ray diffraction, and X-ray absorption, fine structure spectroscopies, the latter two measurements being carried outwith an in situ reaction cell. Additional reactor measurements were performed on a more Sn-rich catalyst and on a pure Pd catalyst. Varying the temperature of reduction induced large variations in catalytic performance toward ethyne-coupling reactions. These changes are understandable in terms of the destruction of SnO2-like structures surrounding the Pd core, yielding a skin of metallic Sn which subsequently undergoes intermixing with Pd. The overall thermal and catalytic behavior of these highly dispersed materials accords well with the analogous single-crystal model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium has a significant track record as a catalyst for a range of oxidation reactions and it has been explored for the selective oxidation of alcohols for many years. This chapter focuses on the two main types of aerobic Pd catalysts: heterogeneous and ligand-modulated systems. In the case of heterogeneous systems, the mechanistic understanding of these systems and the use of in situ and operando techniques to obtain this knowledge are discussed. The current state-of-the-art is also summarized in terms of catalytic performance and substrate scope for heterogeneous Pd-based catalysts. In terms of ligand-modulated systems, leading examples of molecular Pd(ii) catalysts which undergo direct O2 coupled turnover are highlighted. The catalyst performance for such catalysts is exemplified and mechanistic understanding for these molecular systems is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable disagreement in the literature on available oxygen storage capacity, and on the reaction rates associated with the storage process, for three-way automotive catalysts. This paper seeks to address the issue of oxygen storage capacity in a clear and precise manner. The work described involved a detailed investigation of oxygen storage capacity in typical samples of automotive catalysts. The capacity has also been precisely defined and estimates have been made of the specific capacity based on catalyst dimensions. A purpose-built miniature catalyst test rig has been assembled to allow measurement of the capacity and the experimental procedure has been developed to ensure accurate measurement. The measurements from the first series of experiments have been compared with the theoretical calculations and good agreement is seen. A second series of experiments allowed the effect of temperature on oxygen storage capacity to be investigated. This work shows very clearly the large variation of the capacity with temperature.