67 resultados para PHOTOSENSITIZER FLUORESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a water-soluble, thermo-responsive polymer as a highly sensitive fluorescence-lifetime probe of microfluidic temperature is demonstrated. The fluorescence lifetime of poly(N-isopropylacrylamide) labelled with a benzofurazan fluorophore is shown to have a steep dependence on temperature around the polymer phase transition and the photophysical origin of this response is established. The use of this unusual fluorescent probe in conjunction with fluorescence lifetime imaging microscopy (FLIM) enables the spatial variation of temperature in a microfluidic device to be mapped, on the micron scale, with a resolution of less than 0.1 degrees C. This represents an increase in temperature resolution of an order of magnitude over that achieved previously by FLIM of temperature-sensitive dyes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromogenic in situ hybridisation (CISH) has become an attractive alternative to fluorescence in situ hybridisation (FISH) due to its permanent stain which is more familiar to pathologists and because it can be viewed using light microscopy, The aim of the present study is to examine reproducibility in the assessment of abnormal chromosome number by CISH in comparison to FISH. Using three prostate cell lines - PNTIA (derived from normal epithelium), LNCAP and DU145 (derived from prostatic carcinoma), chromosomes 7 and 8 were counted in 40 nuclei in FISH preparations (x100 oil immersion) and 100 nuclei in CISH preparations (x40) by two independent observers. The CISH slides were examined using standard fight microscopy and virtual microscopy. Reproducibitity was examined using paired Student's t-test (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether continuous monitoring of SYBR Green I fluorescence provides a reliable and flexible method of quantitative RT-PCR. Our aims were (i) to test whether SYBR Green I analysis could quantify a wide range of known VEGF template concentrations, (ii) to apply this method in an experimental model, and (iii) to determine whether 20 existing primer pairs could be used to quantify their cognate mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.

MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.

RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.

CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregation behavior in aqueous solution of a number of ionic liquids was investigated at ambient conditions by using three techniques: fluorescence, interfacial tension, and H-1 NMR spectroscopy. For the first time, the fluorescence quenching effect has been used for the determination of critical micelle concentrations. This study focuses on the following ionic liquids: [C(n)mpy]Cl (1-alkyl-3-methylpyridinium chlorides) with different linear alkyl chain lengths (n = 4, 10, 12, 14, 16, or 18), [C(12)mpip]Br (1-dodecyl-1-methylpiperidinium bromide), [C(12)mpy]Br (1-dodecyl-3-methylpyridinium bromide), and [C(12)mpyrr]Br (1-dodecyl-1-methylpyrrolidinium bromide). Both the influence of the alkyl side-chain length and the type of ring in the cation (head) on the CMC were investigated. A comparison of the self-aggregation behavior of ionic liquids based on 1-alkyl-3-methylpyridinium and 1-alkyl-3-methylpyridinium cations is provided. It was observed that 1-alkyl-3-methylpyridinium ionic liquids could be used as quenchers for some fluorescence probes (fluorophores). As a consequence, a simple and convenient method to probe early evidence of aggregate formation was established.