126 resultados para PHOTOEMISSION SPECTRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of high-resolution VLT/UVES spectra of two B-type main sequence stars, NGC 346-11 and AV 304, in the Small Magellanic Cloud (SMC), has been undertaken, using the non-LTE tlusty model atmospheres to derive the stellar parameters and chemical compositions of each star. The chemical compositions of the two stars are in reasonable agreement. Moreover, our stellar analysis agrees well with earlier analyses of H II regions. The results derived here should be representative of the current base-line chemical composition of the SMC interstellar medium as derived from B-type stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates for transitions among the 2s(2)2p(2), 2s2p(3) and 2p(4) levels of Fe XXI are used to derive theoretical electron density (N-e) sensitive emission-line ratios involving 2S2(2)p(2)-2s2p(3) transitions in the similar to 98-146 Angstrom wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe XXI ratios for a solar flare, obtained with the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N-e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates among the 3s(2)3p(4) levels of Cl II are used to derive the nebular emission-line intensity ratios R-1=I(6161.8 Angstrom)/I(8578.7 Angstrom) and R-2=I(6161.8 Angstrom)/I(9123.6 Angstrom) as a function of electron temperature (T-e) and density (N-e). The ratios are found to be very sensitive to changes in T-e but not N-e for densities lower than 10(5) cm(-3). Hence, they should, in principle, provide excellent optical T-e diagnostics for planetary nebulae. The observed values of R-1 and R-2 for the planetary nebulae NGC 6741 and IC 5117, measured from spectra obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope, imply temperatures in excellent agreement with those derived from other diagnostic lines formed in the same region of the nebula as [Cl II]. This provides some observational support for the accuracy of the [Cl II] line ratio calculations and hence the atomic data on which they are based. The [Cl II] 8578.7 and 9123.6 Angstrom lines are identified for the first time (to our knowledge) in a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9 m Anglo- Australian Telescope. However, the 6161.8 Angstrom feature is unfortunately too weak to be identified in the RR Telescopii observations, consistent with its predicted line strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(2)-2s2p(3) transitions in Si IX between 223 and 350 Angstrom are presented. A comparison of these with an extensive dataset of solar-active-region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This provides support for the accuracy of the line- ratio diagnostics, and hence the atomic data on which they are based. In particular, the density-sensitive intensity ratio I (258.10 Angstrom)/ I (349.87 Angstrom) offers an especially promising diagnostic for studies of coronal plasmas, as it involves two reasonably strong emission lines and varies by more than an order of magnitude over the useful density range of 10(9)-10(11) cm(-3). The 2s(2)2p(2) S-1(0) - 2s2p(3) P-1(1) transition at 259.77 Angstrom is very marginally identified for the first time in the SERTS database, although it has previously been detected in solar flare observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical emission-line ratios involving transitions in the 236-412 Angstrom wavelength range are presented for the Na-like ions Ar viii, Cr xiv, Mn xv, Fe xvi, Co xvii, Ni xviii and Zn xx. A comparison of these with an extensive data set of the solar active region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This indicates that most of the Na-like ion lines are reliably detected in the SERTS observations, and hence may be employed with confidence in solar spectral analyses. However, the features in the SERTS spectra at 236.34 and 300.25 Angstrom, originally identified as the Ni xviii 3p (2) P-3/2 -3d (2) D- 3/2 and Cr xiv 3p (2) P-3/2 -3d (2) D-5/2 transitions, respectively, are found to be due to emission lines of Ar xiii (236.34 Angstrom) and possibly S v or Ni vi (300.25 Angstrom). The Co xvii 3s (2) S-3p (2) P-3/2 line at 312.55 Angstrom is always badly blended with an Fe xv feature at the same wavelength, but Mn xv 3s (2) S-3p (2) P-1/2 at 384.75 Angstrom may not always be as affected by second-order emission from Fe xii 192.37 Angstrom as previously thought. On the other hand, we find that the Zn xx 3s (2) S-3p (2) P-3/2 transition can sometimes make a significant contribution to the Zn xx/Fe xiii 256.43- Angstrom blend, and hence care must be taken when using this feature as an Fe xiii electron density diagnostic. A line in the SERTS-89 active region spectrum at 265.00 Angstrom has been re-assessed, and we confirm its identification as the Fe xvi 3p (2) P-3/2 -3d (2) D-3/2 transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R-matrix calculations of electron impact excitation rates in N- like S x are used to derive theoretical emission-line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 189-265 Angstrom wavelength range. A comparison of these with observational data for solar flares and active regions, obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab and the Solar EUV Rocket Telescope and Spectrograph, reveals that many of the S x lines in the spectra are badly blended with emission features from other species. However, the intensity ratios I(228.70 Angstrom)/I(264.24 Angstrom) and I(228.70 Angstrom)/I(259.49 Angstrom) are found to provide useful electron density diagnostics for flares, although the latter cannot be employed for active regions, because of blending of the 259.49 Angstrom line with an unidentified transition in these solar features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical electron density sensitive emission line ratios involving a total of eleven 2s(2)2p(2)-2s2p(3) transitions in S XI between 187 and 292 Angstrom are presented. A comparison of these with solar active region observations obtained during rocket flights by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals generally good agreement between theory and experiment. However, the 186.87 Angstrom line is masked by fairly strong Fe XII emission at the same wavelength, while 239.83 Angstrom is blended with an unknown feature, and 285.58 Angstrom is blended with possibly N IV 285.56 Angstrom. In addition, the 191.23 Angstrom line appears to be more seriously blended with an Fe XIII feature than previously believed. The presence of several new S XI lines is confirmed in the SERTS spectra, at wavelengths of 188.66, 247.14 and 291.59 Angstrom, in excellent agreement with laboratory measurements. In particular, the detection of the 2s(2)2p(2) P- 3(1) -2s2p(3) P-3(0,1) transitions at 242.91 Angstrom is the first time (to our knowledge) that this feature has been identified in the solar spectrum. The potential usefulness of the S XI line ratios as electron density diagnostics for the solar transition region and corona is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 angstrom wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 angstrom), performed using the most recent Fe XV atomic physics calculations in conjunction with a chianti synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e.similar to 0.1 angstrom). An exception is the intensity ratio I(3s3p P-3(2)-3p(2) P-3(1))/I(3s3p P-3(2)-3p(2) D-1(2))=I(321.8 angstrom)/I(327.0 angstrom), which appears to provide good estimates of the electron density at this spectral resolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-phenomenological molecular model is presented, which is capable of describing with the use of analytical formulae, the wideband dielectric(1) and far-infrared spectra of ordinary and heavy water. In the model the vector of a dipole moment is presented as a sum of two components. The absolute value of the first one is constant; the second one changes harmonically with time. The key aspect of this work is consideration of FIR spectra due to the second component. In the context of the modified hybrid model presented in the work, reorientation of the dipoles in the rectangular potential well is considered, as a result of which the librational (near 700 cm (-1)) and translational (near 200 cm (-1)) absorption bands and the microwave Debye relaxation spectrum arise. It is shown that the time-dependent part of a dipole moment contributes most to the translational band, the relevant mechanism is taken to be stretching vibration of the H-bonded molecules. Previous linear-response molecular models were unsuccessful in describing this band (in heavy water) in terms of the complex dielectric permittivity. The spatial and time scales characteristic of water are estimated. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.