44 resultados para PHARYNGEAL FLAP
Resumo:
The localization and distribution of neuropeptides and an indoleamine (serotonin or 5-hydroxytryptamine) in the enteric nervous system (ENS) of the pig roundworm, Ascaris suum, have been determined by the application of an indirect immunofluorescence technique in conjunction with confocal scanning laser microscopy. Whole-mount preparations of pharyngeal, intestinal and rectal regions were screened with antisera to 23 vertebrate peptides, 2 invertebrate peptides and serotonin(= 5-HT). Positive immunoreactivity (IR) was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), FMRFamide, gastrin and serotonin. The only IR observed in the ENS was that evident in the nerve supply to the pharynx and rectal region; no IR was associated with any region of the intestine. The most extensive patterns of IR occurred with antisera to PW, FMRFamide and serotonin. In the pharyngeal component of the ENS, IR was evident in the lateral and dorsal longitudinal pharyngeal nerves, pharyngeal commissures, nerve plexus, and associated nerve cells and fibres. In contrast, the distribution of IR to the PP and gastrin antisera was more restricted and displayed a lower intensity of immunostaining. The other component of the ENS, the rectal enteric system, only yielded immunostaining to FMRFamide. The possible role of neuropeptides and serotonin in the nutritional biology of nematodes is discussed.
Resumo:
Antisera to a highly conserved region of chromogranin A (sequence KELTAE) and to a hexapeptide (sequence KGQELE) adjacent to the putative C-terminus of pancreastatin, a peptide whose sequence is found within the chromogranin A molecule, have been used to examine the localisation of immunoreactivity (IR) to these peptides in Ascaris suum. IR to both peptides was found in the nerve rings and nerve cords. In addition, KGQELE-IR was also observed in the pharyngeal neurones and in a network of fibres on the surface of the female gonoduct. The staining was specific in that it could be abolished by preincubation of the antisera with the appropriate antigen. The two antisera appeared to be staining different subsets of neurones, suggesting that (at least) two peptides were being recognised. The widespread distribution of IR to both peptides throughout the nervous system of the parasite suggests that the peptides carrying the epitopes recognised by the antisera are of fundamental importance to the functioning of the parasite's nervous system.
Resumo:
The organization of the nervous system of Archilopsis unipunctata Promonotus schultzei and Paramonotus hamatus (Monocelididae, Proseriata) and Stenostomum leucops (Catenulida) and Microstomum lineare (Macrostomida) was studied by immunocytochemistry, using antibodies to the authentic flatworm neuropeptide F (NPF) (Moniezia expansa). The organization of the nervous system of the Monocelididae was compared to that of the nervous system of Bothriomolus balticus (Otoplanidae), a previously studied species of another family of the Proseriata. The results show that the main nerve cords (MCs), independent of lateral or ventral position in the Monocelididae and the Otoplanidae, correspond to each other. The study also confirms the status of the lateral cords as main cords (MCs) in S. leucops and M. lineare. Common for MCs in the members of the investigated taxa are the following features: MCs consist of many fibres, originate from the brain and are adjoined to 5-HT-positive neurons. In Monocelididae and Otoplanidae, the MCs additionally have the same type of contact to the pharyngeal nervous system. Also common for both proseriate families is the organization of the two lateral nerve cords, with weaker connections to the brain, and the pair of dorsal cords running above the brain. The organization of the minor cords differs. The Monocelididae have a pair of thin ventral cords forming a mirror image of the dorsal pair. Furthermore, an unpaired ventral medial cord connecting medial commissural cells was observed in P. schultzei. Marginal nerve cords, observed in Otoplanidae, are absent in Monocelididae. All minor nerve cords are closely connected to the peripheral nerve plexus. The postulated trends of condensation of plexal fibres to cords and/or the flexibility of the peripheral nerve plexus are discussed. In addition, the immunoreactivity (IR) pattern of NPF was compared to the IR patterns of the neuropeptide RFamide and the indoleamine, 5-HT (serotonin). Significant differences between the distribution of IR to NPF and to 5-HT occur. 5-HT-IR dominates in the submuscular and subepidermal plexuses. In the stomatogastric plexus of M. lineare, only peptidergic IR is observed in the intestinal nerve net. The distribution of NPF-IR in fibres and cells of the intestinal wall in M. lineare indicates a regulatory function for this peptide in the gut, while a relationship with ciliary and muscular locomotion is suggested for the 5-HT-IR occurring in the subepidermal and submuscular nerve plexuses. In M. lineare, the study revealed an NPF- and RFamide-positive cell pair, marking the finished development of new zooids. This finding indicates that constancy of these cells is maintained in this asexually reproducing and regenerating species.
Resumo:
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. © European Molecular Biology Organization.
Resumo:
A full-scale 34 m composite wind turbine blade was tested to failure under flap-wise loading. Local displacement measurement equipment was developed and displacements were recorded throughout the loading history.
Ovalization of the load carrying box girder was measured in the full-scale test and simulated in non-linear FE-calculations. The nonlinear Brazier effect is characterized by a crushing pressure which causes the ovalization. To capture this effect, non-linear FE-analyses at different scales were employed. A global non-linear FE-model of the entire blade was prepared and the boundaries to a more detailed sub-model were extracted. The FE-model was calibrated based on full-scale test measurements.
Local displacement measurements helped identify the location of failure initiation which lead to catastrophic failure. Comparisons between measurements and FE-simulations showed that delamination of the outer skin was the initial failure mechanism followed by delamnination buckling which then led to collapse.
Resumo:
The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex) - from two Great Lakes and two crater lakes in Nicaragua - to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (dC and dN) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.
Resumo:
Oscillating wave surge converters (OWSCs) are a class of wave power technology that exploits the enhanced horizontal fluid particle movement of waves in the nearshore coastal zone with water depths of 10–20 m. OWSCs predominantly oscillate horizontally in surge as opposed to the majority of wave devices, which oscillate vertically in heave and usually are deployed in deeper water. The characteristics of the nearshore wave resource are described along with the hydrodynamics of OWSCs. The variables in the OWSC design space are discussed together with a presentation of some of their effects on capture width, frequency bandwidth response and power take-off characteristics. There are notable differences between the different OWSCs under development worldwide, and these are highlighted. The final section of the paper describes Aquamarine Power’s 315kW Oyster 1 prototype, which was deployed at the European Marine Energy Centre in August 2009. Its place in the OWSC design space is described along with the practical experience gained. This has led to the design of Oyster 2, which was deployed in August 2011. It is concluded that nearshore OWSCs are serious contenders in the mix of wave power technologies. The nearshore wave climate has a narrower directional spread than the offshore, the largest waves are filtered out and the exploitable resource is typically only 10–20% less in 10m depth compared with 50m depth. Regarding the devices, a key conclusion is that OWSCs such as Oyster primarily respond in the working frequency range to the horizontal fluid acceleration; Oyster is not a drag device responding to horizontal fluid velocity. The hydrodynamics of Oyster is dominated by inertia with added inertia being a very significant contributor. It is unlikely that individual flap modules will exceed 1MW in installed capacity owing to wave resource, hydrodynamic and economic constraints. Generating stations will be made up of line arrays of flaps with communal secondary power conversion every 5–10 units.
Resumo:
The tumour microenvironment has an important role in cancer progression and recent reports have proposed that stromal AKT is activated and regulates tumourigenesis and invasion. We have shown, by immuno-fluorescent analysis of oro-pharyngeal cancer biopsies, an increase in AKT activity in tumour associated stromal fibroblasts compared to normal stromal fibroblasts. Using organotypic raft co-cultures, we show that activation of stromal AKT can induce the invasion of keratinocytes expressing the HPV type 16 E6 and E7 proteins, in a Keratinocyte Growth Factor (KGF) dependent manner. By depleting stromal fibroblasts of each of the three AKT isoforms independently, or through using isoform specific inhibitors, we determined that stromal AKT2 is an essential regulator of invasion and show in oro-pharyngeal cancers that AKT2 specific phosphorylation events are also identified in stromal fibroblasts. Depletion of stromal AKT2 inhibits epithelial invasion through activating a protective pathway counteracting KGF mediated invasions. AKT2 depletion in fibroblasts stimulates the cleavage and release of IL1B from stromal fibroblasts resulting in down-regulation of the KGF receptor (fibroblast growth factor receptor 2B (FGFR2B)) expression in the epithelium. We also show that high IL1B is associated with increased overall survival in a cohort of patients with oro-pharyngeal cancers. Our findings demonstrate the importance of stromal derived growth factors and cytokines in regulating the process of tumour cell invasion.
Resumo:
The European Union has set a target of 20% for the share of renewable energy sources in gross final energy consumption in 2020. These renewable energy targets are priority objectives for the Europe 2020 strategy for inclusive growth. In line with the European Union renewable energy policies, the Northern Ireland Executive has a target to deliver 40% renewable electricity by 2020. Currently, Northern Ireland imports 98% of the energy it uses in the form of fossil fuels. Locally produced energy and electricity is needed to ensure sustainable development. The aim of this research is to develop part of a strategy for the mechanical power take-off system for a flap type wave energy converter. Aquamarine Power Ltd’s Oyster flap was the device used for simulation and testing purposes. In this paper the state-of-the-art of wave energy converters is reviewed and a 40th scale test model was developed and built.
Resumo:
This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.
An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.
The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.
With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.
The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.
A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.
The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.
Resumo:
This short paper, structured in 3 distinct sections will touch on some of the key features of the Oyster wave energy device and its recent development. The first section discusses the nature of the resource in the nearshore environment,
some common misunderstandings in relation to it and its suitability for exploitation of commercial wave energy. In the second section a brief description of some of the fundamentals governing flap type devices is given. This serves to emphasise core differences between the Oyster device and other devices. Despite the simplicity of the design and the operation of the device itself, it is shown that Oyster occupies a theoretical space which is substantially outside most established theories and axioms in wave energy. The third section will give a short summary of the recent developments in the design of the Oyster 2 project and touch on how its enhanced features deal with some of the key commercial and technical challenges present in the sector.
Resumo:
This paper deals with the problem of estimating wave pressure loads acting on Oscillating Wave Surge Converters (OWSC) for assessment of fatigue on their components. Recent wave loading data issued from experimental testing of a 25th scale model of a box-shaped OWSC are here used to review the accuracy of the predictions made by an engineering method previously developed to derive wave pressure loads on OWSCs from experimental data. Predictions are shown underestimate wave pressure loads, and other methods subsequently developed are presented. A simplistic experimental method taking in consideration variations of the wetted surface area of the flap is shown to lead to relatively good estimates of wave pressure loads that could be used for fatigue calculations.
Resumo:
Oyster® is a surface-piercing flap-type device designed to harvest wave energy in the nearshore environment. Established mathematical theories of wave energy conversion, such as 3D point-absorber and 2D terminator theory, are inadequate to accurately describe the behaviour of Oyster, historically resulting in distorted conclusions regarding the potential of such a concept to harness the power of ocean waves. Accurately reproducing the dynamics of Oyster requires the introduction of a new reference mathematical model, the “flap-type absorber”. A flap-type absorber is a large thin device which extracts energy by pitching about a horizontal axis parallel to the ocean bottom. This paper unravels the mathematics of Oyster as a flap-type absorber. The main goals of this work are to provide a simple–yet accurate–physical interpretation of the laws governing the mechanism of wave power absorption by Oyster and to emphasise why some other, more established, mathematical theories cannot be expected to accurately describe its behaviour.
Resumo:
The incidence of breast cancer in women with implants is increasing and will continue to do so for the foreseeable future due to the marked increase in breast implant insertion in recent years. Undoubtedly many of these women will wish to know whether the presence of implants worsens the prognosis of their breast cancer. Furthermore, the clinical management of such patients may be difficult, as aesthetic results are likely to be a major concern for women who have already undergone cosmetic surgery to the breast. There is no consensus on surgical approach to this scenario. This article reviews the literature on the prognosis of breast cancer patients with a history of augmentation mammoplasty and examines the available data regarding their surgical treatment. (c) 2007 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.
Resumo:
Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.
Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.
Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.