49 resultados para PEG-PLGA NANOPARTICLES
Resumo:
We present a method for simulating clusters or, molecules subjected to an external pressure, which is exerted by a pressure-transmitting medium. It is based on the canoninical Langevin thermostat, but extended in such a way that the Brownian forces are allowed to operate only from the region exterior to the cluster. We show that the frictional force of the Langevin thermostat is linked to the pressure of the reservoir in a unique way, and that this property manifests itself when the particle it acts upon is not pointlike but has finite dimensions. By choosing appropriately the strength of the random forces and the friction coefficient, both temperature and pressure can be controlled independently. We illustrate the capabilities of this new method by calculating the compressibility of small gold clusters under pressure.
Resumo:
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.
Resumo:
Since the discovery of a series of Au-based catalysts by Haruta et al. considerable progress has been made in understanding the active role of Au in CO oxidation catalysis. This review provides a summary of recent theoretical work performed in this field; in particular it addresses DFT studies of CO oxidation catalysis over free and supported gold nanoparticles. Several properties of the Au particles have been found to contribute to their unique catalytic activity. Of these properties, the low-coordination state of the Au atoms is arguably the most pertinent, although other properties of the Au cluster atoms, such as electronic charge, cannot be ignored. The current consensuses regarding the mechanism for CO oxidation over Au-based catalysts is also discussed. Finally, water-enhanced catalysis of CO oxidation on Au clusters is summarized.
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.
Resumo:
Delivering sufficient dose to tumours while sparing surrounding tissue is one of the primary challenges of radiotherapy, and in common practice this is typically achieved by using highly penetrating MV photon beams and spatially shaping dose. However, there has been a recent increase in interest in the possibility of using contrast agents with high atomic number to enhance the dose deposited in tumours when used in conjunction with kV x-rays, which see a significant increase in absorption due to the heavy element's high-photoelectric cross-section at such energies. Unfortunately, the introduction of such contrast agents significantly complicates the comparison of different source types for treatment efficacy, as the dose deposited now depends very strongly on the exact composition of the spectrum, making traditional metrics such as beam quality less valuable. To address this, a 'figure of merit' is proposed, which yields a value which enables the direct comparison of different source types for tumours at different depths inside a patient. This figure of merit is evaluated for a 15 MV LINAC source and two 150 kVp sources (both of which make use of a tungsten target, one with conventional aluminium filtration, while the other uses a more aggressive thorium filter) through analytical methods as well as numerical models, considering tissue treated with a realistic concentration and uptake ratio of gold nanoparticle contrast agents (10 mg ml(-1) concentration in 'tumour' volume, 10: 1 uptake ratio). Finally, a test case of human neck phantom is considered with a similar contrast agent to compare the abstract figure to a more realistic treatment situation. Good agreement was found both between the different approaches to calculate the figure of merit, and between the figure of merit and the effectiveness in a more realistic patient scenario. Together, these observations suggest that there is the potential for contrast-enhanced kilovoltage radiation to be a useful therapeutic tool for a number of classes of tumour on dosimetric considerations alone, and they point to the need for further research in this area.
Resumo:
PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi