85 resultados para PCR en temps réel
Resumo:
A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323 bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 107 down to 10 spores diluted in 100 mu l of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of similar to 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to b more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Cystic fibrosis (CF) patients may suffer increased morbidity and mortality through colonisation, allergy and invasive infection from fungi. The black yeast, Exophiala dermatitidis (synonym Wangiella dermatitidis) has been found with increasing frequency in sputum specimens of CF patients, with reported isolation rates ranging from 1.1 to 15.7%. At present, no diagnostic PCR exists to aid with the clinical laboratory detection and identification of this organism. A novel species-specific PCR-based assay was developed for the detection of E. dermatitidis, based on employment of rDNA operons and interspacer (ITS) regions between these rDNA operons. Two novel primers, (designated ExdF & ExdR) were designed in silico with the aid of computer-aided alignment software and with the alignment of multiple species of Exophiala, as well as with other commonly described yeasts and filamentous fungi within CF sputum, including Candida. Aspergillus and Scedosporium. An amplicon of approximately 455 by was generated, spanning the partial ITS I region - the complete 5.8S rDNA region - partial ITS2 region, employing ExdF (forward primer [16-mer], 5'-CCG CCT ATT CAG GTC C-3' and ExdR (reverse primer [16-mer], 5'-TCT CTC CCA CTC CCG C-3', was employed and optimised on extracted genomic DNA from a well characterised culture of E. dermatitidis, as well as with high quality genomic DNA template from a further 16 unrelated fungi, including Candida albicans, C. dubliniensis, C. parapsilosis, C. glabrata, Scedosporium apiospermum, Penicillium sp., Aspergillus fumigatus, Aspergillus versicolor, Pichia guilliermondii, Rhodotorula sp., Trichosporon sp., Aureobasidium pullulans, Fusarium sp., Mucor hiemalis, Bionectria ochroleuca, Gibberella pulicaris. Results demonstrated that only DNA from E. dermatitidis gave an amplification product of the expected sire, whilst none of the other fungi were amplifiable. Subsequent employment of this primer pair detected this yeast from mycological cultures from 2/50 (4%) adult CF patients. These two patients were the only patients who were previously shown to have a cultural history of E. dermatitidis from their sputum. E. dermatitidis is a slow-growing fungus, which usually takes up to two weeks to culture in the microbiology laboratory and therefore is slow to detect conventionally, with the risk of bacterial overgrowth from common co-habiting pan- and multiresistant bacterial pathogens from sputum. namely Pseudomonas aeruginosa and Burkholderia cepacia complex organisms, hence this species-specific PCR assay may help detect this organism from CF sputum more specifically and rapidly. Overall, employment of this novel assay nay help in the understanding of the occurrence. aetiology and epidemiology of E. dermatitidis, as an emerging fungal agent in patients with CF. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.