91 resultados para Organizing Pneumonia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To determine the interobserver reliability of radiologists' interpretations of mobile chest radiographs for nursing home-acquired pneumonia. Design: A cross-sectional reliability study. Setting: Nursing homes and an acute care hospital. Participants: Four radiologists reviewed 40 mobile chest radiographs obtained from residents of nursing homes who met a clinical definition of lower respiratory tract infections. Measurements: Radiologists were asked to interpret radiographs with respect to the film quality; presence, pattern, and extent of an infiltrate; and the presence of a pleural effusion or adenopathy. Interrater reliability was evaluated using the intraclass correlation coefficient derived from a 2-way random effects model. Results: On average the radiologists reported that 6 of the 40 films were of very good or excellent quality and 16 of the 40 were of fair or poor quality. When the finding of an infiltrate was dichotomized (0 = no; 1 = possible, probable, or definite) all 4 radiologists agreed on 21 of the 37 chest radiographs. The intraclass correlation coefficient for the presence or absence of infiltrates was 0.54 (95% confidence intervals [CI] 0.38 to 0.69). For the 14 radiographs where infiltrates were observed by all radiologists, intraclass correlation coefficients for the presence of pleural effusions was 0.08 (95% CI -0.10 to 0.41), hilar adenopathy 0.54 (95% CI 0.29 to 0.79), and mediastinal adenopathy 0.49 (95% CI 0.21 to 0.76). Conclusion: In conclusion, the interrater agreement among radiologists for mobile chest radiographs in establishing the presence or absence of an infiltrate can be judged to be "fair." Treatment decisions need to include clinical findings and should not be made based on radiographic findings alone. © 2006 American Medical Directors Association.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ventilator-associated pneumonia (VAP) is characterized by neutrophils infiltrating the alveolar space. VAP is associated with high mortality, and accurate diagnosis remains difficult. We hypothesized that proteolytic enzymes from neutrophils would be significantly increased and locally produced inhibitors of human neutrophil elastase (HNE) would be decreased in BAL fluid (BALF) from patients with confirmed VAP. We postulated that in suspected VAP, neutrophil proteases in BALF may help identify "true" VAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare.

Objectives: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP. 

Methods: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >104 colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination. 

Results: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%). 

Conclusions: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.

Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.

Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.

Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel strategy for the prevention of ventilator-associatedpneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) withhydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidatehydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) andmethacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, whenrequired, simultaneous attachment to PVC was performed. The mechanical properties, glasstransition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, andgentamicin release were characterized. Increasing the MAA content of the hydrogels significantlydecreased the ultimate tensile strength, % elongation at break, Young’s modulus, and increasedthe glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial(Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogelswas observed; however, while adherence to gentamicin-containing p(HEMA) occurred, noadherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobialpersistence of gentamicin-containing hydrogels was examined by determining the zone ofinhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence,with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa,respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin(4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1 × 109 colony forming units mL−1, 30 min). Viable bacteriawere not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treatedp(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymerscomposed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be usedin conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Ventilator-acquired pneumonia (VAP) is a common reason for antimicrobial therapy in the intensive care unit (ICU). Biomarker-based diagnostics could improve antimicrobial stewardship through rapid exclusion of VAP. Bronchoalveloar lavage (BAL) fluid biomarkers have previously been shown to allow the exclusion of VAP with high confidence. Methods/Design This is a prospective, multi-centre, randomised, controlled trial to determine whether a rapid biomarker-based exclusion of VAP results in fewer antibiotics and improved antimicrobial management. Patients with clinically suspected VAP undergo BAL, and VAP is confirmed by growth of a potential pathogen at > 104 colony-forming units per millilitre (CFU/ml). Patients are randomised 1:1, to either a ‘biomarker-guided recommendation on antibiotics’ in which BAL fluid is tested for IL-1β and IL-8 in addition to routine microbiology testing, or to ‘routine use of antibiotics’ in which BAL undergoes routine microbiology testing only. Clinical teams are blinded to intervention until 6 hours after randomisation, when biomarker results are reported to the clinician. The primary outcome is a change in the frequency distribution of antibiotic-free days (AFD) in the 7 days following BAL. Secondary outcome measures include antibiotic use at 14 and 28 days; ventilator-free days; 28-day mortality and ICU mortality; sequential organ failure assessment (SOFA) at days 3, 7 and 14; duration of stay in critical care and the hospital; antibiotic-associated infections; and antibiotic-resistant pathogen cultures up to hospital discharge, death or 56 days. A healthcare-resource-utilisation analysis will be calculated from the duration of critical care and hospital stay. In addition, safety data will be collected with respect to performing BAL. A sample size of 210 will be required to detect a clinically significant shift in the distribution of AFD towards more patients having fewer antibiotics and therefore more AFD. Discussion This trial will test whether a rapid biomarker-based exclusion of VAP results in rapid discontinuation of antibiotics and therefore improves antibiotic management in patients with suspected VAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Ventilator-acquired pneumonia (VAP) remains a significant problem within intensive care units (ICUs). There is a growing recognition of the impact of critical-illness-induced immunoparesis on the pathogenesis of VAP, but the mechanisms remain incompletely understood. We hypothesised that, because of limitations in their routine detection, Mycoplasmataceae are more prevalent among patients with VAP than previously recognised, and that these organisms potentially impair immune cell function.
Methods and setting
159 patients were recruited from 12 UK ICUs. All patients had suspected VAP and underwent bronchoscopy and bronchoalveolar lavage (BAL). VAP was defined as growth of organisms at >104 colony forming units per ml of BAL fluid on conventional culture. Samples were tested for Mycoplasmataceae (Mycoplasma and Ureaplasma spp.) by PCR, and positive samples underwent sequencing for speciation. 36 healthy donors underwent BAL for comparison. Additionally, healthy donor monocytes and macrophages were exposed to Mycoplasma salivarium and their ability to respond to lipopolysaccharide and undertake phagocytosis was assessed.

Results
Mycoplasmataceaewerefoundin49%(95%CI 33% to 65%) of patients with VAP, compared with 14% (95% CI 9% to 25%) of patients without VAP. Patients with sterile BAL fluid had a similar prevalence to healthy donor BAL fluid (10% (95% CI 4% to 20%) vs 8% (95% CI 2% to 22%)). The most common organism identified was M. salivarium. Blood monocytes from healthy volunteers incubated with M. salivarium displayed an impaired TNF-α response to lipopolysaccharide ( p=0.0003), as did monocyte-derived macrophages (MDMs) (p=0.024). MDM exposed to M. salivarium demonstrated impaired phagocytosis ( p=0.005).

Discussion and conclusions
This study demonstrates a high prevalence of Mycoplasmataceae among patients with VAP, with a markedly lower prevalence among patients with suspected VAP in whom subsequent cultures refuted the diagnosis. The most common organism found, M. salivarium, is able to alter the functions of key immune cells. Mycoplasmataceae may contribute to VAP pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To compare the efficacy of gentamicin, nebulised via the endotracheal tube (ET), with that of parenteral cefotaxime or parenteral cefuroxime in preventing the formation of ET biofilm.

Setting: General intensive care units in two university teaching hospitals.

Design: The microbiology of ET biofilm from 36 ICU patients eligible to receive antibiotic prophylaxis was examined. Peak and trough tracheal concentrations of gentamicin, cefotaxime or cefuroxime were measured in each patient group, on the 2nd day of intubation.

Patients: Twelve patients received gentamicin (80 mg) nebulised in 4 ml normal saline every 8 h, 12 cefotaxime (1 g, 12 hourly) and 12 cefuroxime (750 mg, 8 hourly). Prophylaxis was continued for the duration of intubation.

Measurements and results: Samples of tracheal secretions were taken on the 2nd day of ventilation for determination of antibiotic concentrations. Following extubation, ETs were examined for the presence of biofilm. Pathogens considered to be common aetiological agents for VAP included Staphylococcus aureus, enterococci, Enterobacteriaceae and pseudomonads. While microbial biofilm was found on all ETs from the cephalosporin group, microbial biofilm of these micro-organisms was found on 7 of the 12 ET tubes from patients receiving cefotaxime [S. aureus (4), pseudomonads (1), Enterobacteriaceae (1), enterococcus (1)] and 8 of the 12 ET tubes from patients receiving cefuroxime [Enterobacteriaceae (6), P. aeruginosa (1) and enterococcus (1)]. While microbial biofilm was observed on five ETs from patients receiving nebulised gentamicin, none of these were from pathogens for ventilator-associated pneumonia (VAP). Tracheal concentrations of both cephalosporins were lower than those needed to inhibit the growth of pathogens recovered from ET tube biofilm. The median (and range) concentrations for cefotaxime were 0.90 (<0.23–1.31) mg/l and 0.28 (<0.23–0.58) mg/l for 2 h post-dose and trough samples, respectively. Two hours post-dose concentrations of cefuroxime (median and range) were 0.40 (0.34–0.83) mg/l, with trough concentrations of 0.35 (<0.22–0.47) mg/l. Tracheal concentrations (median and range) of gentamicin measured 1 h post-nebulisation were 790 (352–>1250) mg/l and then, before the next dose, were 436 (250–1000) mg/l.

Conclusion: Nebulised gentamicin attained high concentrations in the ET lumen and was more effective in preventing the formation of biofilm than either parenterally administered cephalosporin and therefore may be effective in preventing this complication of mechanical ventilation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for -tubulin, but not pericentrin, from the MTOC suggests a targeting of -tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro. In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected.