17 resultados para Organic-inorganic nanocomposites
Magnitude, form and bioavailability of fluvial carbon exports from Irish organic soils under pasture
Resumo:
Organic soils are widespread in Ireland and vulnerable to degradation via drainage for agriculture. The soil-landuse combination of pasture on organic soils may play a disproportionate role in regional C dynamics but is yet to receive study. Fluvial C fluxes and labile organic fractions were determined for two such sites at nested field (c.4 ha) and subcatchment scales (>40 ha); one relatively dry and nutrient rich, the other wetter and nutrient poor. Field scale flux from the nutrient poor site over 2 years was 38.9 ± 6.6 g C m−2 yr−1 with DIC > DOC > POC at 57, 32 and 11 % respectively, and 72 % DIC was comprised of above equilibrium CO2. At the nutrient rich site, which overlies limestone geology, field scale export over an individual year was 90.4 g C m−2 with DIC > DOC > POC at 49, 42 and 9 %, but with 90 % DIC as bicarbonate. By comparison with the nutrient poor site, the magnitude and composition of inorganic C exports from the nutrient rich site implied considerable export of soil-respiratory C as bicarbonate, and lower evasion losses due to carbonate system buffering. Labile DOC determined using dark incubations indicated small fractions (5–10 %) available for remineralisation over typical downstream transit times of days to weeks. These fractions are probably conservative as photolysis in the environment can increase the proportion of labile compounds via photocleavage and directly remineralise organic matter. This study demonstrates that monitoring at soil–water interfaces can aid capture of total landscape fluvial fluxes by precluding the need to incorporate prior C evasion, although rapid runoff responses at field scales can necessitate high resolution flow proportional, and hydrograph sampling to constrain uncertainty of flux estimates.
Resumo:
Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.