19 resultados para Organic Production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under the dissolution curve (AUC) was used as a measure of the time during which a supersaturated concentration could be maintained, and for all systems, SFI formulations performed better than similar HME formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of 100 μg 1,2-dichlorobenzene (1,2-DCB) g-1 dry weight (dw) of soil introduced either as a single dose or multiple (10 fortnightly) doses of 10 μg g-1 dw, on the microbial biomass, diversity of culturable bacterial community and the rate of 1,2-DCB mineralisation, were compared. After 22 weeks exposure both application regimes significantly reduced total bacterial counts and viable fungal hyphal length. The single dose had the greatest overall inhibitory effect, although the extent of inhibition varied throughout the study. Total culturable bacterial counts, determined after 22 weeks exposure showed little response to 1,2-DCB, but pseudomonad counts in single and multiple treatments were reduced to 9.7 and 0.147%, respectively, of the numbers detected in the control soil. The effect of 1,2-DCB application on the taxonomic composition of the culturable bacteria community was determined by fatty acid methyl ester (FAME) analysis. Compared to control soils, the single dose treatment had a lower percentage of Arthrobacter and Micrococcus. Multiple applications had a significant effect upon pseudomonad abundance, which represented only 2% of the identified community, compared to 45.6% in the control. The multi-dosed soils contained a high percentage of bacilli (> 25%). The effects of 1,2-DCB applications on the metabolic potential of the soil microbial community was determined by BIOLOG profiling. The number of carbon compounds utilised by the community in the multi-dosed soils (49 positives) was significantly less (P < 0.05) than detected in the single dose treatment (76) and control (66). The rate of 1,2-DCB mineralisation, determined by 14CO2 production from radiolabelled [UL-14C] 1,2-DCB, declined throughout the study, and after 22 weeks was slightly but significantly (P < 0.05) lower in the multiply- than the singly-dosed soils. The differential response to 1,2-DCB treatments was attributed to its reduced bioavailability in soils after a single exposure, compared to multiple applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POP were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced the ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A suite of lipid biomarkers were investigated from surface sediments and particulate matter across hydrographically distinct zones associated with the western Irish Sea gyre and the seasonal bloom. The aim was to assess the variation of organic matter (OM) composition, production, distribution and fate associated with coastal and southern mixed regions and also the summer stratified region. Based on the distribution of a suite of diagnostic biomarkers, including phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids, diatoms, dinoflagellates and green algae were identified as major contributors of marine organic matter (MOM) in this setting. The distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids indicate that copepod grazing represents an important process for mineralising this primary production. Net tow data from 2010 revealed much greater phytoplankton and zooplankton biomass in well-mixed waters compared to stratified waters. This appears to be largely reflected in MOM input to surface sediments. Terrestrial organic matter (TOM), derived from higher plants, was identified as a major source of OM regionally, but was concentrated in proximity to major riverine input at the Boyne Estuary and Dundalk Bay. Near-bottom residual circulation and the seasonal gyre also likely play a role in the fate of TOM in the western Irish Sea.