20 resultados para Optimization of Water Resources Management and Control
Resumo:
The management of water resources in Ireland prior to the Water Framework Directive (WFD) has focussed on surface water and groundwater as separate entities. A critical element to the successful implementation of the
WFD is to improve our understanding of the interaction between the two and flow mechanisms by which groundwaters discharge to surface waters. An improved understanding of the contribution of groundwater to surface water is required for the classification of groundwater body status and the determination of groundwater quality thresholds. The results of the study will also have a wider application to many areas of the WFD.
A subcommittee of the WFD Groundwater Working Group (GWWG) has been formed to develop a methodology to estimate the groundwater contribution to Irish Rivers. The group has selected a number of analytical techniques to quantify components of stream flow in an Irish context (Master Recession Curve, Unit Hydrograph, Flood Studies Report methodologies and
hydrogeological analytical modelling). The components of stream flow that can be identified include deep groundwater, intermediate and overland. These analyses have been tested on seven pilot catchments that have a variety of hydrogeological settings and have been used to inform and constrain a mathematical model. The mathematical model used was the NAM (NedbØr-AfstrØmnings-Model) rainfall-runoff model which is a module of DHIs MIKE 11 modelling suite. The results from these pilot catchments have been used to develop a decision model based on catchment descriptors from GIS datasets for the selection of NAM parameters. The datasets used include the mapping of aquifers, vulnerability and subsoils, soils, the Digital Terrain Model, CORINE and lakes. The national coverage of the GIS datasets has allowed the extrapolation of the mathematical model to regional catchments across Ireland.
Resumo:
Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.
Resumo:
Increased complexity in large design and manufacturing organisations requires improvements at the operations management (OM)–applied service (AS) interface areas to improve project effectiveness. The aim of this paper is explore the role of Lean in improving the longitudinal efficiency of the OM–AS interface within a large aerospace organisation using Lean principles and boundary spanning theory. The methodology was an exploratory longitudinal case approach including exploratory interviews (n = 21), focus groups (n = 2), facilitated action-research workshops (n = 2) and two trials or experiments using longitudinal data involving both OM and AS personnel working at the interface. The findings draw upon Lean principles and boundary spanning theory to guide and interpret the findings. It was found that misinterpretation, and forced implementation, of OM-based Lean terminology and practice in the OM–AS interface space led to delays and misplaced resources. Rather both OM and AS staff were challenged to develop a cross boundary understanding of Lean-based boundary (knowledge) objects in interpreting OM requests. The longitudinal findings from the experiments showed that the development of Lean Performance measurements and lean Value Stream constructs was more successful when these Lean constructs were treated as boundary (knowledge) objects requiring transformation over time to orchestrate improved effectiveness and in leading to consistent terminology and understanding between the OM–AS boundary spanning team.