17 resultados para Optimal Linear Control
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.
Resumo:
his paper investigates the identification and output tracking control of a class of Hammerstein systems through a wireless network within an integrated framework and the statistic characteristics of the wireless network are modelled using the inverse Gaussian cumulative distribution function. In the proposed framework, a new networked identification algorithm is proposed to compensate for the influence of the wireless network delays so as to acquire the more precise Hammerstein system model. Then, the identified model together with the model-based approach is used to design an output tracking controller. Mean square stability conditions are given using linear matrix inequalities (LMIs) and the optimal controller gains can be obtained by solving the corresponding optimization problem expressed using LMIs. Illustrative numerical simulation examples are given to demonstrate the effectiveness of our proposed method.