22 resultados para Oleaginous shale
Resumo:
The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of
Resumo:
Iron and Mn redistribute in soil and saprolite during weathering. The geological weathering fronts ofcalcareous sedimentary rock were investigated by examining the bulk density, porosity, and distribution ofCa, Fe, and Mn. Core samples were taken ofsoil, saprolite, and bedrock material from both summit (HHMS-4B) and sideslope (HHMS-5A) positions on an interbedded Nolichucky shale and Maryville limestone landform in Solid Waste Storage Area 6 (SWSA-6). This is a low-level radioactive solids waste disposal site on the Dept. ofEnergy (DOE) Oak Ridge Reservation in Roane County Tennessee. This work was initiated because data about the properties of highly weathered sedimentary rock on this site were limited. The core samples were analyzed for pH, calcium carbonate equivalence (CCE), hydroxylamine-extractable (HA) Mn, and dithionite-citrate (CBD)-extractable Fe and Mn. Low pH values occurred from the soil surface down to the depth of the oxidized and leached saprolite in both cores. The CCE and HA-extractable Mn results were also influenced by the weathering that has occurred in these zones. Extractable Mn oxide was higher at a lower depth in the oxidized and leached saprolite compared with the Fe oxide, which was higher in the overlying soil solum. Amounts of Mn oxides were higher in the sideslope core (HHMS-5A) than in the summit core (HHMS-4B). Iron was more abundant in the deeper weathered summit core, but the highest value, 39.4 g kg-1, was found at 1.8 to 2.4 m in the sideslope core. The zone encompassing the oxidized and partially leached saprolite down to the unoxidized and unleached bedrock had higher densities and larger quantities of CaCO3 than the soil solum and oxidized and leached saprolite. The overlying soil and oxidized and leached saprolite had lower pH and CCE values and were higher in Fe and Mn oxides than the oxidized and unleached saprolite. The distribution of Fe and Mn is important when evaluating soil and saprolite for hazardous waste disposal site assessment.
Resumo:
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.
For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 O m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.
Resumo:
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.
Resumo:
Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ15N and δ18O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers.