18 resultados para OYSTERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oyster populations around the world have seen catastrophic decline which has been largely attributed to overexploitation, disease and pollution. While considerable effort and resources have been implemented into restoring these important environmental engineers, the success of oyster populations is often limited by poor understanding of site-specific dispersal patterns of propagules. Water-borne transport is a key factor controlling or regulating the dispersal of the larval stage of benthic marine invertebrates which have limited mobility. The distribution of the native oyster Ostrea edulis in Strangford Lough, Northern Ireland, together with their densities and population structure at subtidal and intertidal sites has been documented at irregular intervals between 1997 and 2013. This paper revisits this historical data and considers whether different prevailing environmental conditions can be used to explain the distribution, densities and population structure of O. edulis in Strangford Lough. The approach adopted involved comparing predictive 2D hydrodynamic models coupled with particle tracking to simulate the dispersal of oyster larvae with historical and recent field records of the distribution of both subtidal and intertidal, populations since 1995. Results from the models support the hypothesis that commercial stocks of O. edulis introduced into Strangford Lough in the 1990s resulted in the re-establishment of wild populations of oysters in the Northern Basin which in turn provided a potential source of propagules for subtidal populations. These results highlight that strategic site selection (while inadvertent in the case of the introduced population in 1995) for the re-introduction of important shellfish species can significantly accelerate their recovery and restoration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.