72 resultados para OPERATIONS RESEARCH
Resumo:
We consider the problem of train planning or scheduling for large, busy, complex train stations, which are common in Europe and elsewhere, though not in North America. We develop the constraints and objectives for this problem, but these are too computationally complex to solve by standard combinatorial search or integer programming methods. Also, the problem is somewhat political in nature, that is, it does not have a clear objective function because it involves multiple train operators with conflicting interests. We therefore develop scheduling heuristics analogous to those successfully adopted by train planners using ''manual'' methods. We tested the model and algorithms by applying to a typical large station that exhibits most of the complexities found in practice. The results compare well with those found by traditional methods, and take account of cost and preference trade-offs not handled by those methods. With successive refinements, the algorithm eventually took only a few seconds to run, the time depending on the version of the algorithm and the scheduling problem. The scheduling models and algorithms developed and tested here can be used on their own, or as key components for a more general system for train scheduling for a rail line or network.Train scheduling for a busy station includes ensuring that there are no conflicts between several hundred trains per day going in and out of the station on intersecting paths from multiple in-lines and out-lines to multiple platforms, while ensuring that each train is allowed at least its minimum required headways, dwell time, turnaround time and trip time. This has to be done while minimizing (costs of) deviations from desired times, platforms or lines, allowing for conflicts due to through-platforms, dead-end platforms, multiple sub-platforms, and possible constraints due to infrastructure, safety or business policy.
Resumo:
In a model commonly used in dynamic traffic assignment the link travel time for a vehicle entering a link at time t is taken as a function of the number of vehicles on the link at time t. In an alternative recently introduced model, the travel time for a vehicle entering a link at time t is taken as a function of an estimate of the flow in the immediate neighbourhood of the vehicle, averaged over the time the vehicle is traversing the link. Here we compare the solutions obtained from these two models when applied to various inflow profiles. We also divide the link into segments, apply each model sequentially to the segments and again compare the results. As the number of segments is increased, the discretisation refined to the continuous limit, the solutions from the two models converge to the same solution, which is the solution of the Lighthill, Whitham, Richards (LWR) model for traffic flow. We illustrate the results for different travel time functions and patterns of inflows to the link. In the numerical examples the solutions from the second of the two models are closer to the limit solutions. We also show that the models converge even when the link segments are not homogeneous, and introduce a correction scheme in the second model to compensate for an approximation error, hence improving the approximation to the LWR model.
Resumo:
This paper addresses the difficult problem of how to improve the process of evaluating organisational change. Given that the data emergent from an evaluative exercise will strongly influence the subsequent strategic and operational decisions taken by organisational managers, it is critical that the evaluation approach itself is capable of delivering high quality, accurate and timely data. The aim of this paper is to examine the role of the IT-based Optionfinder Technology used in conjunction with focus groups, in generating management decision-making data, and reflecting the changes in key performance indicators in a utility organisation. The case study research evaluates the innovative integrative approach adopted by the utility organisation and concludes that the proposed approach contributes to improvements in the decision-making capability of managers.
Resumo:
There is a perception that teaching space in universities is a rather scarce resource. However, some studies have revealed that in many institutions it is actually chronically under-used. Often, rooms are occupied only half the time, and even when in use they are often only half full. This is usually measured by the ‘utilization’ which is defined as the percentage of available ‘seat-hours’ that are employed. Within real institutions, studies have shown that this utilization can often take values as low as 20–40%. One consequence of such a low level of utilization is that space managers are under pressure to make more efficient use of the available teaching space. However, better management is hampered because there does not appear to be a good understanding within space management (near-term planning) of why this happens. This is accompanied, within space planning (long-term planning) by a lack of experise on how best to accommodate the expected low utilizations. This motivates our two main goals: (i) To understand the factors that drive down utilizations, (ii) To set up methods to provide better space planning. Here, we provide quantitative evidence that constraints arising from timetabling and location requirements easily have the potential to explain the low utilizations seen in reality. Furthermore, on considering the decision question ‘Can this given set of courses all be allocated in the available teaching space?’ we find that the answer depends on the associated utilization in a way that exhibits threshold behaviour: There is a sharp division between regions in which the answer is ‘almost always yes’ and those of ‘almost always no’. Through analysis and understanding of the space of potential solutions, our work suggests that better use of space within universities will come about through an understanding of the effects of timetabling constraints and when it is statistically likely that it will be possible for a set of courses to be allocated to a particular space. The results presented here provide a firm foundation for university managers to take decisions on how space should be managed and planned for more effectively. Our multi-criteria approach and new methodology together provide new insight into the interaction between the course timetabling problem and the crucial issue of space planning.