28 resultados para OBJECT-ORIENTED DESIGN
Resumo:
Defining Simulation Intent involves capturing high level modelling and idealisation decisions in order to create an efficient and fit-for-purpose analysis. These decisions are recorded as attributes of the decomposed design space.
An approach to defining Simulation Intent is described utilising three known technologies: Cellular Modelling, the subdivision of space into volumes of simulation significance (structures, gas paths, internal and external airflows etc.); Equivalencing, maintaining a consistent and coherent description
of the equivalent representations of the spatial cells in different analysis models; and Virtual Topology, which offers tools for partitioning and de-partitioning the model without disturbing the manufacturing oriented design geometry. The end result is a convenient framework to which high level analysis attributes can be applied, and from which detailed analysis models can be generated
with a high degree of controllability, repeatability and automation. There are multiple novel aspects to the approach, including its reusability, robustness to changes in model topology and the inherent links created between analysis models at different levels of fidelity and physics.
By utilising Simulation Intent, CAD modelling for simulation can be fully exploited and simulation work-flows can be more readily automated, reducing many repetitive manual tasks (e.g. the definition of appropriate coupling between elements of different types and the application of boundary conditions). The approach has been implemented and tested with practical examples, and
significant benefits are demonstrated.
Resumo:
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Resumo:
The contemporary dominance of visuality has turned our understanding of space into a mode of unidirectional experience that externalizes other sensual capacities of the body while perceiving the built environment. This affects not only architectural practice but also architectural education when an introduction to the concept of space is often challenging, especially for the students who have limited spatial and sensual training. Considering that an architectural work is not perceived as a series of retinal pictures but as a repeated multi-sensory experience, the problem definitions in the design studio need to be disengaged from the dominance of a ‘focused vision’ and be re-constructed in a holistic manner. A method to address this approach is to enable the students to refer to their own sensual experiences of the built environment as a part of their design processes. This paper focuses on a particular approach to the second year architectural design teaching which has been followed in the Department of Architecture at Izmir University of Economics for the last three years. The very first architectural project of the studio and the program, entitled ‘Sensing Spaces’, is conducted as a multi-staged design process including ‘sense games, analyses of organs and their interpretations into space’. The objectives of this four-week project are to explore the sense of space through the design of a three-dimensional assembly, to create an awareness of the significance of the senses in the design process and to experiment with re-interpreted forms of bodily parts. Hence, the students are encouraged to explore architectural space through their ‘tactile, olfactory, auditory, gustative and visual stimuli’. In this paper, based on a series of examples, architectural space is examined beyond its boundaries of structure, form and function, and spatial design is considered as an activity of re-constructing the built environment through the awareness of bodily senses.
Resumo:
The Field Programmable Gate Array (FPGA) implementation of the commonly used Histogram of Oriented Gradients (HOG) algorithm is explored. The HOG algorithm is employed to extract features for object detection. A key focus has been to explore the use of a new FPGA-based processor which has been targeted at image processing. The paper gives details of the mapping and scheduling factors that influence the performance and the stages that were undertaken to allow the algorithm to be deployed on FPGA hardware, whilst taking into account the specific IPPro architecture features. We show that multi-core IPPro performance can exceed that of against state-of-the-art FPGA designs by up to 3.2 times with reduced design and implementation effort and increased flexibility all on a low cost, Zynq programmable system.
Resumo:
Model Driven Architecture supports the transformation from reusable models to executable software. Business representations, however, cannot be fully and explicitly represented in such models for direct transformation into running systems. Thus, once business needs change, the language abstractions used by MDA (e.g. Object Constraint Language / Action Semantics), being low level, have to be edited directly. We therefore describe an Agent-oriented Model Driven Architecture (AMDA) that uses a set of business models under continuous maintenance by business people, reflecting the current business needs and being associated with adaptive agents that interpret the captured knowledge to behave dynamically. Three contributions of the AMDA approach are identified: 1) to Agent-oriented Software Engineering, a method of building adaptive Multi-Agent Systems; 2) to MDA, a means of abstracting high level business-oriented models to align executable systems with their requirements at runtime; 3) to distributed systems, the interoperability of disparate components and services via the agent abstraction.
Resumo:
Art History is often seen as a mandatory core course in the curricula of design programs but it is rarely tailored to the needs and goals of such programs. Instead, the traditional chronological organization of lecture topics, invariably beginning with the “Venus of Willendorf” (c. 25,000 BC) is presented in order to impart to the students a supposed holistic “big picture.” This essay outlines the re-structuring of a two-semester first-year faculty-wide introductory art history course, entitled “History of Art and Design,” in the Faculty of Fine Arts and Design at Izmir University of Economics, Izmir, Turkey. The course was re-configured from a conventional chronologically-presented (time-oriented) lecture series to a thematically presented (topic-oriented) lecture series more relevant to the students of the faculty – architecture, interior architecture, graphic design, industrial design, and fashion design students.
Resumo:
Apparatus for scanning a moving object includes a visible waveband sensor oriented to collect a series of images of the object as it passes through a field of view. An image processor uses the series of images to form a composite image. The image processor stores image pixel data for a current image and predecessor image in the series. It uses information in the current image and its predecessor to analyse images and derive likelihood measures indicating probabilities that current image pixels correspond to parts of the object. The image processor estimates motion between the current image and its predecessor from likelihood weighted pixels. It generates the composite image from frames positioned according to respective estimates of object image motion. Image motion may alternatively be detected be a speed sensor such as Doppler radar sensing object motion directly and providing image timing signals
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of the screening mode of the Humphrey-Welch Allyn frequency-doubling technology (FDT), Octopus tendency-oriented perimetry (TOP), and the Humphrey Swedish Interactive Threshold Algorithm (SITA)-fast (HSF) in patients with glaucoma. DESIGN: A comparative consecutive case series. METHODS: This was a prospective study which took place in the glaucoma unit of an academic department of ophthalmology. One eye of 70 consecutive glaucoma patients and 28 age-matched normal subjects was studied. Eyes were examined with the program C-20 of FDT, G1-TOP, and 24-2 HSF in one visit and in random order. The gold standard for glaucoma was presence of a typical glaucomatous optic disk appearance on stereoscopic examination, which was judged by a glaucoma expert. The sensitivity and specificity, positive and negative predictive value, and receiver operating characteristic (ROC) curves of two algorithms for the FDT screening test, two algorithms for TOP, and three algorithms for HSF, as defined before the start of this study, were evaluated. The time required for each test was also analyzed. RESULTS: Values for area under the ROC curve ranged from 82.5%-93.9%. The largest area (93.9%) under the ROC curve was obtained with the FDT criteria, defining abnormality as presence of at least one abnormal location. Mean test time was 1.08 ± 0.28 minutes, 2.31 ± 0.28 minutes, and 4.14 ± 0.57 minutes for the FDT, TOP, and HSF, respectively. The difference in testing time was statistically significant (P <.0001). CONCLUSIONS: The C-20 FDT, G1-TOP, and 24-2 HSF appear to be useful tools to diagnose glaucoma. The test C-20 FDT and G1-TOP take approximately 1/4 and 1/2 of the time taken by 24 to 2 HSF. © 2002 by Elsevier Science Inc. All rights reserved.
Resumo:
We analyze the effect of different pulse shaping filters on the orthogonal frequency division multiplexing (OFDM) based wireless local area network (LAN) systems in this paper. In particular, the performances of the square root raised cosine (RRC) pulses with different rolloff factors are evaluated and compared. This work provides some guidances on how to choose RRC pulses in practical WLAN systems, e.g., the selection of rolloff factor, truncation length, oversampling rate, quantization levels, etc.
Resumo:
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.
Resumo:
Background: Over one billion children are exposed worldwide to political violence and armed conflict. Currently, conclusions about bases for adjustment problems are qualified by limited longitudinal research from a process-oriented, social-ecological perspective. In this study, we examined a theoretically-based model for the impact of multiple levels of the social ecology (family, community) on adolescent delinquency. Specifically, this study explored the impact of children’s emotional insecurity about both the family and community on youth delinquency in Northern Ireland. Methods: In the context of a five-wave longitudinal research design, participants included 999 mother-child dyads in Belfast (482 boys, 517 girls), drawn from socially-deprived, ethnically-homogenous areas that had experienced political violence. Youth ranged in age from 10 to 20 and were 12.18 (SD = 1.82) years old on average at Time 1. Findings: The longitudinal analyses were conducted in hierarchical linear modeling (HLM), allowing for the modeling of inter-individual differences in intra-individual change. Intra-individual trajectories of emotional insecurity about the family related to children’s delinquency. Greater insecurity about the community worsened the impact of family conflict on youth’s insecurity about the family, consistent with the notion that youth’s insecurity about the community sensitizes them to exposure to family conflict in the home. Conclusions: The results suggest that ameliorating children’s insecurity about family and community in contexts of political violence is an important goal toward improving adolescents’ well-being, including reduced risk for delinquency.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.