55 resultados para Numerical Algorithms and Problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Political commentators often cast religious con? ict as the result of the numerical growth and political rise of a single faith. When Islam is involved, arguments about religious fundamentalism are quick to surface and often stand as an explanation in their own right. Yet, as useful as this type of explanation may be, it usually fails to address properly, if at all, two sets of important issues. It avoids, Ž rst, the question of the rise of other religions and their contribution to tensions and con? icts. Second, it reduces the role of the State to a reactive one. The State becomes an object of contest or conquest, or it is simply ignored. Adopting a different approach, this article investigates a controversy that took place in Mozambique in 1996 around the ‘ofŽ cialisation’ of two Islamic holidays. It looks at the role played by religious competition and state mediation. The article shows that the State’s abandonment of religious regulation – the establishment of a free ‘religious market’ – fostered religious competition that created tensions between faiths. It suggests that strife ensued because deregulation was almost absolute: the State did not take a clear stand in religious matters and faith organisations started to believe that the State was becoming, or could become, confessional. The conclusion discusses theoretical implications for the understanding of religious strife as well as Church and State relations. It also draws some implications for the case of Mozambique more speciŽ cally, implications which should have relevance for countries such as Malawi, Zambia and Zimbabwe where problems of a similar nature have arisen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe some unsolved problems of current interest; these involve quantum critical points in
ferroelectrics and problems which are not amenable to the usual density functional theory, nor to
classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–
Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter)
because they are dominated by finite aperiodic boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Requirements Engineering (RE) has received much attention in research and practice due to its importance to software project success. Its inter-disciplinary nature, the dependency to the customer, and its inherent uncertainty still render the discipline diffcult to investigate. This results in a lack of empirical data. These are necessary, however, to demonstrate which practically relevant RE problems exist and to what extent they matter. Motivated by this situation, we initiated the Naming the Pain in Requirements Engineering (NaPiRE) initiative which constitutes a globally distributed, bi-yearly replicated family of surveys on the status quo and problems in practical RE.

In this article, we report on the analysis of data obtained from 228 companies in 10 countries. We apply Grounded Theory to the data obtained from NaPiRE and reveal which contemporary problems practitioners encounter. To this end, we analyse 21 problems derived from the literature with respect to their relevance and criticality in dependency to their context, and we complement this picture with a cause-effect analysis showing the causes and effects surrounding the most critical problems.

Our results give us a better understanding of which problems exist and how they manifest themselves in practical environments. Thus, we provide a rst step to ground contributions to RE on empirical observations which, by now, were dominated by conventional wisdom only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

100.00% 100.00%

Publicador: