125 resultados para Norreys
Resumo:
The experimental study of the behavior of deuterium plasma with densities between 2 X 1018 and 2 x 10(20) cm(-3), subjected to a 6 TW, 30 ps, 3 X 10(18) W cm(-2) laser pulse, is presented Conclusive experimental proof that a single straight channel is generated when the laser pulse interacts with the lowest densities is provided This channel shows no small-scale longitudinal density modulations, extends up to 2 mm in length and persists for up to 150 ps after the peak of the interaction Bifurcation of the channel after 1 mm propagation distance is observed for the first time For higher density interactions, above the relativistic self-focusing threshold, bubblelike structures are observed to form at late times These observations have implications for both laser wakefield accelerators and fast ignition inertial fusion studies (C) 2010 American Institute of Physics [doi 10 1063/1 3505305]
Resumo:
Evidence of high gain pumped by recombination has been observed in the 5g-4f transition at 11.1 nn in sodiumlike copper ions with use of a 20-J 2-ps Nd:glass laser system. The time- and space-integrated gain coefficient was 8.8 +/- 1.4 cm(-1), indicating a single-transit amplification of similar to 60 times. This experiment has shown that 2 ps is the optimum pulse duration to drive the sodiumlike copper recombination x-ray lasing at 11.1 nm. (C) 1996 Optical Society of America
Resumo:
Recombining plasmas produced by picosecond laser pulses are characterized by measuring ratio of intensities of resonance lines of H- and He-like ions in the plasmas. It is found that the rapidly recombining plasmas produced by picosecond laser pulses are suitable for high-gain operation.
Resumo:
Recent progress in the development of XUV lasers by research teams using high-power and ultrashort-pulse Nd:glass and KrF laser facilities at the Rutherford Appleton Laboratory is reviewed. Injector-amplifier operation and prepulse enhanced output of the Ge XXIII collisional laser driven by a kilojoule glass laser, enhanced gain in CVI recombination with picosecond CPA drive pulses from a glass laser, and optical field ionization and XUV harmonic generation with a KrF CPA laser are described.
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.
NEAR-FIELD IMAGING OF THE C-VI HIGH-GAIN RECOMBINATION X-RAY LASER-DRIVEN BY A 20-J, 2 PS LASER-BEAM
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
Resumo:
A half-cavity using a multilayer mirror has been set up close to the end of a large gain germanium-target system. An unambiguous saturation behaviour of the 232 angstrom and 236 angstrom lines has been observed. The role of the cavity mirror in this result is discussed. Suggestions are made for practical applications of an XUV laser in this wavelength range.