35 resultados para Noncoding Sequences
Resumo:
Six experiments examined children's ability to make inferences using temporal order information. Children completed versions of a task involving a toy zoo; one version required reasoning about past events (search task) and the other required reasoning about future events (planning task). Children younger than 5 years failed both the search and the planning tasks, whereas 5-year-olds passed both (Experiments 1 and 2). However, when the number of events in the sequence was reduced (Experiment 3), 4-year-olds were successful on the search task but not the planning task. Planning difficulties persisted even when relevant cues were provided (Experiments 4 and 5). Experiment 6 showed that improved performance on the search task found in Experiment 3 was not due to the removal of response ambiguity.
Resumo:
Age–depth models form the backbone of most palaeoenvironmental studies. However, procedures for constructing chronologies vary between studies, they are usually not explained sufficiently, and some are inadequate for handling calibrated radiocarbon dates. An alternative method based on importance sampling through calibrated dates is proposed. Dedicated R code is presented which works with calibrated radiocarbon as well as other dates, and provides a simple, systematic, transparent, documented and customizable alternative. The code automatically produces age–depth models, enabling exploration of the impacts of different assumptions (e.g., model type, hiatuses, age offsets, outliers, and extrapolation).
Resumo:
Tephra horizons are potentially perfect time markers for dating and cross-correlation among diverse Holocene palaeoenvironmental records such as ice cores and marine and terrestrial sequences, but we need to trust their age. Here we present a new age estimate of the Holocene Mjauvotn tephra A using accelerator mass spectrometry C-14 dates from two lakes on the Faroe Islands. With Bayesian age modelling it is dated to 6668-6533 cal. a BP (68.2% confidence interval) - significantly older and better constrained than the previous age. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.
Resumo:
Phage metagenomes isolated from wastewater over a 12-month period were analyzed. The results suggested that various strains of Proteobacteria, Bacteroidetes, and other phyla are likely to participate in transduction. The patterns of 16S rRNA sequences found in phage metagenomes did not follow changes in the total bacterial community.
Resumo:
Propionibacterium acnes is an anaerobic Gram-positive bacterium that has been linked to a wide range of opportunistic human infections and conditions, most notably acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). We now present the whole-genome sequences of three P. acnes strains from the type IA(2) cluster which were recovered from ophthalmic infections (A. McDowell et al., Microbiology 157:1990-2003, 2011).
Resumo:
This paper addresses the pose recovery problem of a particular articulated object: the human body. In this model-based approach, the 2D-shape is associated to the corresponding stick figure allowing the joint segmentation and pose recovery of the subject observed in the scene. The main disadvantage of 2D-models is their restriction to the viewpoint. To cope with this limitation, local spatio-temporal 2D-models corresponding to many views of the same sequences are trained, concatenated and sorted in a global framework. Temporal and spatial constraints are then considered to build the probabilistic transition matrix (PTM) that gives a frame to frame estimation of the most probable local models to use during the fitting procedure, thus limiting the feature space. This approach takes advantage of 3D information avoiding the use of a complex 3D human model. The experiments carried out on both indoor and outdoor sequences have demonstrated the ability of this approach to adequately segment pedestrians and estimate their poses independently of the direction of motion during the sequence. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
REMA is an interactive web-based program which predicts endonuclease cut sites in DNA sequences. It analyses Multiple sequences simultaneously and predicts the number and size of fragments as well as provides restriction maps. The users can select single or paired combinations of all commercially available enzymes. Additionally, REMA permits prediction of multiple sequence terminal fragment sizes and suggests suitable restriction enzymes for maximally discriminatory results. REMA is an easy to use, web based program which will have a wide application in molecular biology research. Availability: REMA is written in Perl and is freely available for non-commercial use. Detailed information on installation can be obtained from Jan Szubert (jan.szubert@gmail.com) and the web based application is accessible on the internet at the URL http://www.macaulay.ac.uk/rema. Contact: b.singh@macaulay.ac.uk. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The adapter molecule CAS is localized primarily within focal adhesions in fibroblasts. Because many of the cellular functions attributed to CAS are likely to be dependent on its presence in focal adhesions, this study was undertaken to identify regions of the protein that are involved in its localization. The SH3 domain of CAS, when expressed in isolation from the rest of the protein, was able to target to focal adhesions, whereas a variant containing a point mutation that rendered the SH3 domain unable to associate with FAK remained cytoplasmic. However, in the context of full-length CAS, this mutation did not prevent CAS localization to focal adhesions. Two other variants of CAS that contained deletions of either the SH3 domain alone, or the SH3 domain together with an adjoining proline-rich region, also retained the capacity to localize to focal adhesions. A second focal adhesion targeting region was mapped to the extreme carboxy terminus of CAS. The identification of this second focal adhesion targeting domain in CAS ascribes a previously unknown function to the highly conserved C terminus of CAS. The regulated targeting of CAS to focal adhesions by two independent domains may reflect the important role of CAS within this subcellular compartment.
Resumo:
Objectives: Interference between a target and simultaneous maskers occurs both at the cochlear level through energetic masking and more centrally through informational masking (IM). Hence, quantifying the amount of IM requires a strict control of the energetic component. Presenting target and maskers on different sides (i.e., dichotically) reduces energetic masking but provides listeners with important lateralization cues that also drastically reduce IM. The main purpose of this study (Experiment 1) was to evaluate a "switch" manipulation aiming at restoring most of the IM despite dichotic listening. Experiment 2 was designed to investigate the source of the difficulty induced by this switching dichotic condition.
Design: In Experiment 1, the authors presented 60 normal-hearing young adults with a detection task in which a regularly repeating target was embedded in a randomly varying background masker. The authors evaluated spatial masking release induced by three different dichotic listening conditions in comparison with a diotic baseline. Dichotic stimuli were presented in either a nonswitching or a switching condition. In the latter case, the presentation sides of dichotic target and maskers alternated several times throughout 10 sec sequences. The impact of the number of switches on IM was investigated parametrically, with both pure and complex tone sequences. In Experiment 2, the authors compared performance of 13 young, normal-hearing listeners in a monotic and dichotic version of the rapidly switching condition, using pure-tone sequences.
Results: When target and maskers switched rapidly within sequences, IM was significantly stronger than in nonswitching dichotic sequences and was comparable with the masking effect induced by diotic sequences. Furthermore, Experiment 2 suggests that rapidly switching target and maskers prevent listeners from relying on lateralization cues inherent to the dichotic condition, hence preserving important amounts of IM.
Conclusions: This paradigm thus provides an original tool to isolate IM in signal and maskers having overlapping spectra.