28 resultados para Neuronal Protein 22
Resumo:
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)
Resumo:
Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.
Resumo:
We report the functional characterization of the galF gene of strain VW187 (Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo, GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF-/galU+ and galF/galU+ isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo. We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.
Resumo:
Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly–inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single–channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.
Resumo:
Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin-microtubule interactions.
Resumo:
ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.
Resumo:
To determine the relationships between C-reactive protein (CRP) levels and features of Type 1 diabetes.
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100kb), rare copy number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1,564 cases and 1,748 controls all from Ireland, and further extended the analysis to include an additional 5,196 UK controls. We found association with duplications at chr20p12.2 (P=0.007) and evidence of replication in large independent European schizophrenia (P=0.052) and UK bipolar disorder case-control cohorts (P=0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11,707 cases and 10 carriers in 21,204 controls (meta-analysis CMH P value=2x10(-4) (odds ratio (OR)=11.3, 95% CI=3.7, ∞)). Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68Mb with similar breakpoints across samples. By haplotype analysis and sequencing we identified a tandem ∼149kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P=2.5x10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.
Resumo:
EpsinR is a clathrin-coated vesicle (CCV) enriched 70-kD protein that binds to phosphatidylinositol-4-phosphate, clathrin, and the gamma appendage domain of the adaptor protein complex 1 (AP1). In cells, its distribution overlaps with the perinuclear pool of clathrin and AP1 adaptors. Overexpression disrupts the CCV-dependent trafficking of cathepsin D from the trans-Golgi network to lysosomes and the incorporation of mannose-6-phosphate receptors into CCVs. These biochemical and cell biological data point to a role for epsinR in AP1/clathrin budding events in the cell, just as epsin1 is involved in the budding of AP2 CCVs. Furthermore, we show that two gamma appendage domains can simultaneously bind to epsinR with affinities of 0.7 and 45 microM, respectively. Thus, potentially, two AP1 complexes can bind to one epsinR. This high affinity binding allowed us to identify a consensus binding motif of the form DFxDF, which we also find in gamma-synergin and use to predict that an uncharacterized EF-hand-containing protein will be a new gamma binding partner.
Resumo:
The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.
Resumo:
Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results showed that microbial protein synthesis (MCP; 148 vs 171 g/kg DM) and rumen protein degraded balance (DPB; 108 vs 127 g/kg DM) were lower in the CS-Y line, but there were no differences in total truly digested protein in small intestine (DVE) and feed milk value (FMV) between the two lines. In conclusion, the new yellow line had different nutritional, chemical, and structural features compared to the black line. CS-Y provided better nutrient utilization and availability.
Resumo:
Currently, there are no biomarkers which can identify patients with an increased risk of developing urothelial cancer as a result of occupational chemical exposure. The aim of this study was to evaluate the relationships between final diagnosis and 22 biomarkers measured in urine, serum and plasma collected from 156 hematuric patients. Fourteen of the 80 patients (17.5%) with urothelial cancer and 13/76 (17.1%) of the controls were deemed to have a history of chemical exposure. We applied Fisher's exact tests to explore associations between chemical exposure and final diagnosis, and tumor stage and grade, where applicable; ANOVA and t-test to compare age across patients with and without chemical exposure; and Zelen's exact test to evaluate relationships across final diagnosis, chemical exposure and smoking. Following pre-selection of biomarkers using Lasso, we identified biomarkers with differential levels across patients with and without chemical exposure using Welch's t-test. Using a one-sided t-test and considering multiple testing using FDR, we observed that TM levels in urine were significantly higher in samples from patients with a history of chemical exposure regardless of their diagnosis as control or urothelial cancer (one-sided t-test, pUC = 0.014 and pCTL = 0.043); in the presence of dipstick protein and when urinary pH levels ≤ 6 (p = 0.003), but not in the presence of dipstick blood (p = 0.115). Urothelial cancer patients with a history of chemical exposure were significantly younger (64.1 years) than those without chemical exposure (70.2 years) (one-sided t-test p-value = 0.012); and their tumors were higher grade (Fisher's exact test; p = 0.008). There was a strong association between a history of chemical exposure and smoking in urothelial cancer patients (Zelen's exact test; p = 0.025). Elevated urinary thrombomodulin levels could have the potential to identify chemical exposure in hematuric patients at high risk of developing urothelial cancer.