225 resultados para Neurology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has recently been demonstrated that patients with Angelman's syndrome who exhibited a deletion on cytogenetic tests show more severe clinical pictures with drug-resistant epilepsy than patients with Angelman's syndrome not carrying the deletion. To verify if this difference in clinical severity can be attributed to genes for the three gamma-aminobutyric acid (GABA)A receptor subunits (GABRB3, GABRA5, GABRG3) located in the deleted region, a possible modification of peripheral markers of the GABAergic system was investigated in 12 subjects with Angelman's syndrome and 20 age-matched subjects (8 with idiopathic epilepsy and 12 not affected by neurologic diseases). The results confirmed a more severe clinical picture, and epilepsy syndrome in particular, in Angelman's syndrome patients with deletions versus patients without deletions. In contrast, biochemical study (based on dosage of plasma levels of GABA and diazepam binding inhibitor, an endogenous ligand of GABAA and peripheral benzodiazepine receptors, showed contradictory results: patients with Angelman's syndrome showed significantly higher levels of GABA and diazepam binding inhibitor than patients without neurologic impairment but significantly lower levels than epileptic controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite progress in defining a pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, orally bioavailable compounds that prevent its effects on hippocampal synaptic plasticity and cognitive function have not yet emerged. A particularly attractive therapeutic strategy is to selectively neutralize small, soluble Abeta oligomers that have recently been shown to mediate synaptic dysfunction. METHODS: Using electrophysiological, biochemical, and behavioral assays, we studied how scyllo-inositol (AZD-103; molecular weight, 180) neutralizes the acutely toxic effects of Abeta on synaptic function and memory recall. RESULTS: Scyllo-inositol, but not its stereoisomer, chiro-inositol, dose-dependently rescued long-term potentiation in mouse hippocampus from the inhibitory effects of soluble oligomers of cell-derived human Abeta. Cerebroventricular injection into rats of the soluble Abeta oligomers interfered with learned performance on a complex lever-pressing task, but administration of scyllo-inositol via the drinking water fully prevented oligomer-induced errors. INTERPRETATION: A small, orally available natural product penetrates into the brain in vivo to rescue the memory impairment produced by soluble Abeta oligomers through a mechanism that restores hippocampal synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the morbillivirus genus, canine distemper (CDV), phocine distemper virus (PDV), and the cetacean viruses of dolphins and porpoises exhibit high levels of CNS infection in their natural hosts. CNS complications are rare for measles virus (MV) and are not associated with rinderpest virus (RPV) and peste des petits ruminants virus (PPRV) infection. However, it is possible that all morbilliviruses infect the CNS but in some hosts are rapidly cleared by the immune response. In this study, we assessed whether RPV and PPRV have the potential to be neurovirulent. We describe the outcome of infection, of selected mouse strains, with isolates of RPV, PPRV, PDV, porpoise morbillivirus (PMV), dolphin morbillivirus (DMV), and a wild-type strain of MV. In the case of RPV virus, strains with different passage histories have been examined. The results of experiments with these viruses were compared with those using neuroadapted and vaccine strains of MV, which acted as positive and negative controls respectively. Intracerebral inoculation with RPV (Saudi/81) and PPRV (Nigeria75/1) strains produced infection in Balb/C and Cd1, but not C57 suckling mice, whereas the CAM/RB rodent-adapted strain of MV infected all three strains of mice. Weanling mice were only infected by CAM/RB. Intranasal and intraperitoneal inoculation failed to produce infection with any virus strains. We have shown that, both RPV and PPRV, in common with other morbilliviruses are neurovirulent in a permissive system. Transient infection of the CNS of cattle and goats with RPV and PPRV, respectively, remains a possibility, which could provide relevant models for the initial stages of MV infection in humans.