27 resultados para Natural gas in submerged lands
Resumo:
Objective: To describe the clinical characteristics, natural course, and complications of a large group of patients with primary iris pigment epithelium (IPE) cysts. Design: Observational case series. Participants: Two hundred thirty-four patients with primary IPE cysts participated. Results: Primary IPE cysts were classified as central in 6 patients (3%), midzonal in 50 patients (21%), peripheral in 170 patients (73%), and dislodged in 8 patients (3%). Central (pupillary) IPE cysts were found only in males, peripheral IPE cysts were found most often in females (69%), and no gender predilection was detected for midzonal and dislodged IPE cysts. Central and peripheral IPE cysts occurred in young patients (mean age, 20 and 33 years, respectively), whereas midzonal and dislodged IPE cysts were seen in slightly older patients (mean age, 52 and 45 years, respectively). Central IPE cysts were visible when the pupil was not dilated and appeared most often as a round or collapsed brown lesion arising from the pupillary margin, most commonly superonasally. Midzonal IPE cysts were brown and fusiform, best visualized after pupillary dilation. Peripheral IPE cysts produced a characteristic bulging in the iris stroma near the iris root, but they were directly visible in only 78% of cases. After wide dilation and patient and slit-lamp positioning, they appeared as a round clear lesion behind the iris, most often in the inferotemporal quadrant. Finally, dislodged IPE cysts appeared as a brown oval lesion, free floating in the anterior chamber (12%) or in the vitreous (12%), or fixed in the anterior chamber angle (75%). One hundred twenty-four patients (53%) were followed for a mean of 35 months (range, 3 months-19 years). In these patients, complications associated with IPE cysts included lens subluxation in one case (1%), iritis in one case (1%), focal cataract in two cases (2%), glaucoma in two cases (2%), and corneal touch in five cases (4%). Conclusion: Primary IPE cysts have characteristic clinical features that serve to differentiate them from intraocular malignancies. Most cysts have a benign clinical course, and treatment is rarely necessary.
Resumo:
The objective of this study was to examine the estrogen and androgen hormone removal efficiency of reactive (Connelly zero-valent iron (ZVI), Gotthart Maier ZVI) and sorptive (AquaSorb 101 granular activated carbon (GAC) and OrganoLoc PM-100 organo clay (OC)) materials from HPLC grade water and constructed wetland system (CWS) treated dairy farm wastewater. Batch test studies were performed and hormone concentration analysis carried out using highly sensitive reporter gene assays (RGAs). The results showed that hormonal interaction with these materials is selective for individual classes of hormones. Connelly ZVI and AquaSorb 101 GAC were more efficient in removing testosterone (Te) than 17?-estradiol (E2) and showed faster removal rates of estrogen and androgen than the other materials. Gotthart Maier ZVI was more efficient in removing E2 than Te. OrganoLoc PM-100 OC achieved the lowest final concentration of E2 equivalent (EEQ) and provided maximum removal of both estrogens and androgens.
Resumo:
Recent landmark experiments have demonstrated how quantum mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems. Here we present a theoretical model to simulate such an output coupler for a Tonks- Girardeau gas that shows excellent agreement with the experimental results for atom transport and output coupling. The solid theoretical basis our model provides allows us to explore non-equilibrium transport phenomena in ultra-cold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localised in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.
Resumo:
The chemistry in a protoplanetary accretion disk is modelled between a radius of 100 and 0.1 AU of the central object. We find that interaction of the gas with the dust grains is very important, both by removing a large fraction of the material from the gas in the outer regions and through the chemical reactions which can occur on the dust grain surfaces. In addition, collision with grains neutralises gaseous ions effectively and keeps the ionization fraction low. This results in a chemistry which is dominated by neutral-neutral reactions, even if ionization is provided by cosmic rays or by the decay of radioactive isotopes. We model the effects of two desorption processes with very different efficiencies and find that while these produce similar results over much of the disk for many species, some molecules are extremely sensitive to the nature of the desorption and may one day be used as an observational test for the desorption process.
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 2
Resumo:
The unsteady gas dynamic phenomena in a racecar airbox have been examined, and resonant tuning effects have been considered. A coupled 1D/3D analysis, using the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the engine and airbox. The models were experimentally validated. An airbox was designed with a natural frequency in the region of 75 Hz. A coupled 1D/3D analysis of the airbox and a Yamaha R6 4 cylinder engine predicted resonance at the single-cylinder induction frequency; 75 Hz at an engine speed of 9000 rpm.
Resumo:
The First World War hit Germany severely, particularly the agricultural sector, because the outbreak came unexpected and its duration exceeded all expectations. Many resources necessary for agricultural production were required by the war economy and led to shortages and shrinking supplies. Many agricultural laborers were drafted and the blockade imposed by the allies prevented Germany from a great deal of imports. As a consequence, the nutritional situation was devastating, particularly after 1916, and hit all groups of the German society. The period under observation provides one of most drastic natural experiments in the 20th century. This study uses anthropometric data from German soldiers who served in the Second World War to trace living standards between the 1900s and the 1920s. In contrast to other approaches, this paper is able to distinguish between social groups by occupation, religious denominatio\n, regional origin, and city size. The results suggest that although all social strata were hit by famine conditions, the height of farmers, urban citizens, Catholics, and especially individuals born in the highly integrated food-import regions along the coast and the banks of the Rhine declined most.
Resumo:
This article examines resource nationalism in sub-Saharan Africa's energy and minerals markets. It does so by exploring economic and political developments in three cases: Nigeria as an example of a petro-state established by means of expropriation in the wake of decolonisation; South Africa, a mature mining industry shaped by its settler colonial history; and Mozambique, a new and therefore highly-dependent entrant into the league of significant natural gas producers. Extractive industries have played a controversial role in sub-Saharan Africa due in particular to the prevalence of the resource curse. Nevertheless, energy exports will continue to play an important role in fuelling economic growth and, potentially, also development as new deposits of natural gas and oil are discovered across the region. Resource nationalism has, moreover, increasingly constrained operations of the traditionally dominant Western energy companies, in particular as competition from state-owned energy companies in sub-Saharan Africa and from emerging powers such as China is increasing.
Resumo:
Ionic liquids (ILs) are popular designer green chemicals with great potential for use in diverse energy-related applications. Apart from the well-known low vapor pressure, the physical properties of ILs, such as hydrogen-bond-forming capacity, physical state, shape, and size, can be fine-tuned for specific applications. Natural gas hydrates are easily formed in gas pipelines and pose potential problems to the oil and natural gas industry, particularly during deep-sea exploration and production. This review summarizes the recent advances in IL research as dual-function gas hydrate inhibitors. Almost all of the available thermodynamic and kinetic inhibition data in the presence of ILs have been systematically reviewed to evaluate the efficiency of ILs in gas hydrate inhibition, compared to other conventional thermodynamic and kinetic gas hydrate inhibitors. The principles of natural gas hydrate formation, types of gas hydrates and their inhibitors, apparatuses and methods used, reported experimental data, and theoretical methods are thoroughly and critically discussed. The studies in this field will facilitate the design of advanced ILs for energy savings through the development of efficient low-dosage gas hydrate inhibitors.
Resumo:
This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.
Resumo:
BACKGROUND:
Evidence regarding the association of the built environment with physical activity is influencing policy recommendations that advocate changing the built environment to increase population-level physical activity. However, to date there has been no rigorous appraisal of the quality of the evidence on the effects of changing the built environment. The aim of this review was to conduct a thorough quantitative appraisal of the risk of bias present in those natural experiments with the strongest experimental designs for assessing the causal effects of the built environment on physical activity.
METHODS:
Eligible studies had to evaluate the effects of changing the built environment on physical activity, include at least one measurement before and one measurement of physical activity after changes in the environment, and have at least one intervention site and non-intervention comparison site. Given the large number of systematic reviews in this area, studies were identified from three exemplar systematic reviews; these were published in the past five years and were selected to provide a range of different built environment interventions. The risk of bias in these studies was analysed using the Cochrane Risk of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NRSI).
RESULTS:
Twelve eligible natural experiments were identified. Risk of bias assessments were conducted for each physical activity outcome from all studies, resulting in a total of fifteen outcomes being analysed. Intervention sites included parks, urban greenways/trails, bicycle lanes, paths, vacant lots, and a senior citizen's centre. All outcomes had an overall critical (n = 12) or serious (n = 3) risk of bias. Domains with the highest risk of bias were confounding (due to inadequate control sites and poor control of confounding variables), measurement of outcomes, and selection of the reported result.
CONCLUSIONS:
The present review focused on the strongest natural experiments conducted to date. Given this, the failure of existing studies to adequately control for potential sources of bias highlights the need for more rigorous research to underpin policy recommendations for changing the built environment to increase physical activity. Suggestions are proposed for how future natural experiments in this area can be improved.